ROWAN UNIVERSITY Department of Mathematics

Master Syllabus

MATH 01361 – Introduction to Real and Complex Variables (3sh)

CATALOG DESCRIPTION:

The course introduces the basic ideas of real analysis: sequences, continuity, differentiability, and their rigorous treatment, and introduces the basic elements of complex analysis up to derivatives rules.

OBJECTIVES:

There are two main objectives of this course. First, it will lay the foundations of real number system through sequences. Second, it introduces the complex number systems and functions of a complex variable.

This course will achieve the following Departmental goals:

- Develop the ability to use and understand mathematical symbols and solve mathematical problems.
- Be able to recognize, understand, and verify proofs of theorems.
- Be able to create proofs to theoretical problems. .
- Be able to analyze a situation from multiple points of view including graphically, algebraically, and numerically.
- Be able to communicate mathematical ideas both orally and in written form.
- Be able to learn mathematics independently.
- Understand the historical context of mathematics

PREREQUISITES:

Calculus III (Math 01 230) and Linear Algebra (Math 01 210), each with a grade of C- or better.

CONTENT:

- 1. Real and Complex Numbers
 - 1.1. Preliminaries
 - 1.2. The Real Numbers as a Field.
 - 1.3. Absolute Values and Intervals
 - 1.4. Completeness and Archimedean Properties
 - 1.5. The Complex Numbers and Their Basic Properties
 - 1.6. Geometric Properties of Complex Numbers
- 2. Sequences
 - 2.1. The epsilon-N Definition of Limit of a Sequence

- 2.2. Limit Theorems
- 2.3. Cauchy Sequences and the Completeness Property
- 2.4. Monotone Convergence Theorem and Bolzano-Weierstrass Theorem,
- 2.5. Sequences of Complex Numbers

3. Functions

- 3.1. Limits and Continuity of Real Valued Functions of Real Variable
- 3.2. Intermediate Value Theorem and Extreme Value Theorem
- 3.3. Functions of a Complex Variable:
 - 3.3.1. Polynomials
 - 3.3.2. Power Functions
 - 3.3.3. Trigonometric Functions
 - 3.3.4. Exponential and Logarithmic Functions
- 3.4. Limits and Continuity of Functions of a Complex Variable

4. Derivatives

- 4.1. Definition of Derivative
- 4.2. Rules of Derivative
- 4.3. Cauchy-Riemann Equations

5. Integrals

- 5.1. Riemann Sums and the Fundamental Theorems of Calculus
- 5.2. Curves and Parameterization of Curves
- 5.3. Integrals of Functions of Complex Variables
- 5.4. Properties of Integrals of Complex Valued Functions
- 5.5. Cauchy's Theorem and the Cauchy Integral Formula

SUGGESTED TEXTS:

None

Edited: 10/2024