Course number and name: Concepts in Artificial Intelligence (CS 07650)

Credits and contact hours: 3 credits / 3 contact hours

Instructor's or course coordinator's name: John (Xiajun) Jiang

Instructional materials: Artificial Intelligence: Foundations of

Computational Agents, 3rd Edition David L. Poole and Alan K. Mackworth

Specific course information

Catalog description: This course surveys methods for programming computers to

behave intelligently. Topics include knowledge representation methods, heuristic search, theorem-proving, puzzle-solving, game-

playing, natural language processing, and expert systems.

About this course: Concepts of AI provides a foundational, systems-level

understanding of how intelligent technologies perceive, reason, and learn. It takes a broader, structural approach and traces the core ideas that underlie modern AI systems, from classical decision-making frameworks to contemporary learning-based

methods.

Prerequisites: Fluency expected in the following areas (below each area are

potential learning resources:

1. Search fundamentals (i.e., depth-first search [DFS], breadth-first search [BFS])

a. BFS: LinkedIn Learning, Hacker Earth, Code Academy

b. DFS: LinkedIn Learning, Hacker Earth, Code Academy

2. Big O Notation: LinkedIn Learning

3. Graphs and Trees

4. Concepts from Mathematics

a. Linear Algebra - Matrices and Vectors

b. Probability – Joint distribution, Conditional distribution, Marginal distribution, Product rule, Chain rule, Bayes rule, Gaussian distribution, Expectation, Variance, Covariance, Maximum likelihood estimation, Maximum a posteriori

c. Calculus - Partial Derivatives

Specific Topics:

- Introduction: An overview of AI Tools for Problem Solving
 - o Nomenclature and state of the field
 - o What is Generative AI?
 - o What is Agentic AI?
- State Space Search
 - o Representing Problems as State Space Search Problems
 - States / Actions / Costs
 - o Search Algorithms for State Space Search
 - A*, Greedy, Lowest-Cost First-Search (LCFS)
 - Heuristics: General, Admissible, Consistent
- Intro to Game Theory and Zero-Sum Games
 - o Minimax
 - o Alpha/Beta Pruning
 - o Probabilistic Games: Expectimax
- Constraint Satisfaction Problems (CSP)
- Propositional Logic (optional)
- Introduction to ML
 - o Regression
 - Classification
 - o ML model accuracy: Gradient Descent
 - o ML model generalization: Underfitting & Overfitting, Regularization
 - Unsupervised learning
- Introduction to Neural Networks
 - o Feedforward NN & backpropagation
 - Neural network applications: vision tasks, sequential data, object detection, transformers
 - o Advanced topics: generative AI, etc.