
Course number and name: CS 04103: Computer Science &
Programming

Credits and contact hours: 4 credits / 4 contact hours
Instructor’s or course coordinator’s name: Jacob Levy

Text book, title, author, and year: C++:	Early	Objects,	10th	Edition.	Tony	
Gaddis,	Judy	Walters,	&	Godfrey	
Muganda

Specific course information

Catalog description: This course emphasizes programming methodology, algorithms

and simple data structures. A programming language rich enough
to allow easy implementation of data structures is studied. Prior
programming experience in any programming language is
expected for this course.

Prerequisites: None

Specific goals for the course

• Problem Solving & Design Techniques for Programming. Students have
successfully studied and utilized problem solving & design techniques (e.g. Top-
Down Design, Modular coding, the use of functions and classes) that are critical for
well-written, large-scale, modular programs. This should include how classes and
functions implement the basic tenets of OOP such as the Single Responsibility
Principle, the Open/Closed Principle, avoidance of code duplication (Reusability),
and Extensibility (inheritance). Lastly, students should have an understanding of what
it means to create an “abstraction” and to hide implementation details as needed.

• Basic Control Structures and Algorithmic Design in C++. Students have
successfully demonstrated an understanding of and have utilized basic control
structures including Branching and Selection (if/else & switch), a variety of looping
structures, and basic input/output to files. Students should be able to demonstrate
how to use them to assemble simple algorithms for problem solving.

• Simple Data Structures and User Defined Data Types By the end of the course the

students should have a basic understanding of simple data structures (Arrays and
Structs) as well as how to model and define and use their own simple composite Data
Types using structs and classes/objects. Students have a clear understanding of the
differences between instance and static members of a class as well the difference
between a specific class instance and the class itself. They should understand and
have utilized the technique of inheritance to extend/customize various classes (either
or both Standard Library classes and those they have defined themselves)

Required list of topics to be covered. Topics may be covered in a different order than listed,
and may be more in depth than what is shown. Refer to your specific class syllabus and
Instructor for more details.

1. Basic C++

a. Primitive Data, variables, constants
i. scope

b. cin/cout
2. Selection Structures

a. if/else
b. switch

3. Loops
a. While
b. For
c. do

4. Simple File I/O
a. Reading and Writing text files

5. Problem Analysis/Breakdown
a. Functions

i. Instance vs Static
b. Modular Programming

i. Separation of Concerns/Single Responsibility Principle
c. Modeling Data

i. Structs
ii. Structs vs Primitive Data

1. ADTs: How to create simple composite Data types
6. Introduction to Classes

a. Basic OOP
i. Intro to Objects

ii. Objects/Classes vs Structs
1. Value Type vs Reference Type

iii. Basic Data Abstraction/Encapsulation/Data Hiding
b. Data Abstraction and OOP Design

i. Introduction to Inheritance and extensibility of classes
ii. Open/Closed Principle

7. Arrays, Vectors
a. How to work with collections of Data

Optional list of topics that may be included pending on class pace

1. Simple Searching & Sorting
2. Pointers & Dynamic Data
3. Inheritance in Depth
4. Recursion

