
Course number and name: CS 04215: Computer Laboratory
Techniques

Credits and contact hours: 3 credits / 3 contact hours
Course Coordinator: Darren Provine

Instructional Materials: Unix in a Nutshell, by Arnold Robbins,
2005, et al; and The C Programming
Language, by Kernighan & Richie, 1989

Specific Course Information

Catalog description: A practical introduction to the hardware, software and networks
used by the Computer Science Department. A foundation in
programming using the language or languages required for
intermediate and advanced computer science courses will be
included.

Prerequisites: CS 04113 Introduction to Object Oriented Programming or
CS 04103 Computer Science and Programming; and
Sophomore Standing

Type of Course: ☒ Required ☐ Elective ☐ Selected Elective

Educational objectives for Course

1. Student will demonstrate ability to manage UNIX/BSD/Linux files and directories;
creating, moving, renaming, and deleting files/directories., setting access permissions
on files/directories, and using tools such as find to locate files in a directory
hierarchy.

o ABET (5) Function effectively as a member or leader of a team engaged in
activities appropriate to the program’s discipline.

2. Students will demonstrate ability to manage multiple revisions of files using tools

such as RRCS/CVS or other revision management software.
o ABET (5) Function effectively as a member or leader of a team engaged in

activities appropriate to the program’s discipline.

3. Students will demonstrate understanding of C pointers and arrays.
o ABET (1) Analyze a complex computing problem and to apply principles of

computing and other relevant disciplines to identify solutions.
o ABET (2) Design, implement, and evaluate a computing-based solution to

meet a given set of computing requirements in the context of the program’s
discipline.

o ABET (6) Apply computer science theory and software development
fundamentals to produce computing-based solutions.

4. Students will demonstrate understanding of C bitwise operations.

o ABET (1) Analyze a complex computing problem and to apply principles of
computing and other relevant disciplines to identify solutions.

o ABET (2) Design, implement, and evaluate a computing-based solution to
meet a given set of computing requirements in the context of the program’s
discipline.

o ABET (6) Apply computer science theory and software development
fundamentals to produce computing-based solutions.

5. Students will demonstrate ability to manage compilation of C programs broken across

multiple files, including builds software such as Make.
o ABET (1) Analyze a complex computing problem and to apply principles of

computing and other relevant disciplines to identify solutions.
o ABET (2) Design, implement, and evaluate a computing-based solution to

meet a given set of computing requirements in the context of the program’s
discipline.

o ABET (6) Apply computer science theory and software development
fundamentals to produce computing-based solutions.

6. Students will demonstrate ability to use symbolic debugger programs such as gdb,

examining data inside a running program and tracing its execution.
o ABET (1) Analyze a complex computing problem and to apply principles of

computing and other relevant disciplines to identify solutions.
o ABET (2) Design, implement, and evaluate a computing-based solution to

meet a given set of computing requirements in the context of the program’s
discipline.

o ABET (5) Function effectively as a member or leader of a team engaged in
activities appropriate to the program’s discipline.

o ABET (6) Apply computer science theory and software development
fundamentals to produce computing-based solutions.

7. Students will demonstrate ability to use a Unix shell, such a bash or csh, interactively

to manage day-to-day tasks of software development, and creating shell scripts to
solve simple administrative or file-management tasks.

o ABET (1) Analyze a complex computing problem and to apply principles of
computing and other relevant disciplines to identify solutions.

o ABET (2) Design, implement, and evaluate a computing-based solution to
meet a given set of computing requirements in the context of the program’s
discipline.

o ABET (5) Function effectively as a member or leader of a team engaged in
activities appropriate to the program’s discipline.

o ABET (6) Apply computer science theory and software development
fundamentals to produce computing-based solutions.

8. Students will demonstrate ability to use standard Unix filters, such as grep, sed, tr,

sort, head, and tail, to search inside files and to modify program output when needed.

o ABET (1) Analyze a complex computing problem and to apply principles of
computing and other relevant disciplines to identify solutions.

o ABET (2) Design, implement, and evaluate a computing-based solution to
meet a given set of computing requirements in the context of the program’s
discipline.

o ABET (5) Function effectively as a member or leader of a team engaged in
activities appropriate to the program’s discipline.

o ABET (6) Apply computer science theory and software development
fundamentals to produce computing-based solutions.

Required list of topics to be covered:

1. Implementation of basic security concepts including permissions, bounds checking,
input validation, type checking and parameter validation

2. Regular expressions as used in (C/Linux); Standard Unix text filters, such as grep,
sed, tr, and sort.

3. Data structures and algorithms in C.
4. Basic Boolean logic/operations in C.
5. Linux BASH Scripting
6. Programming constructs and concepts in C, including:

a. Variables and types
b. Strings, arrays, structures
c. Sequential and parallel execution
d. Assignments
e. Decisions and branching
f. Loops
g. Functions, procedures, and calls
h. Debugging techniques
i. Arrays, pointers, and memory access
j. File access

7. Model/View/Controller architecture, including callback
functions activated by outside events.

8. Appropriate and secure use of library functions
9. Defensive programming techniques
10. Command line interfaces

