
Course Number and Name: CS 04225: Principles of Data
Structures

Credits and contact hours: 3 credits/contact hours

Course Coordinator’s name: Jacob Levy

Text book, title, author, and year: C++: Early Objects, 10th Edition. Tony
Gaddis, Judy Walters, & Godfrey
Muganda

Course Information

Catalog Description: The course features programs of realistic complexity. The programs
utilize data structures (strings, lists, graphs, stacks) and algorithms (searching, sorting, etc.) for
manipulating these data structures. The course emphasizes interactive design and includes the
use of microcomputer systems and direct access data files.

Pre-requisites: Undergraduate level CS 04103 Minimum Grade of C- or

Undergraduate level CS 04113 Minimum Grade of C-

Course Goals

1. Learn the fundamentals of Data Structures and how they are applied in
programming solutions

By the end of this course, students will have gained an understanding of a variety of
commonly used Data Structures, how they are implemented, how to work with them, and
how they are utilized in algorithmic solutions. They will also learn when to use the
different structures.

2. Design, Analyze, and Implement Efficient Algorithms in C++

By the end of this course, students will have gained the ability to effectively analyze
general algorithms in both logical (processing) and physical (memory) complexity. They
will also be able to develop and implement efficient algorithms in C++. Students will also
gain understanding of more advanced C++ concepts such as pointers, how to use the
Standard Template Library, and recursive problem solving.

3. Learn the fundamentals of Searching and Sorting

By the end of this course, students will have been exposed to a variety of searching and
sorting algorithms. Students will analyze and compare these algorithms, learn when to
apply the different algorithms, and why different algorithms are necessary.

List of Topics to be covered
Items in Bold are required
Items in Italics are suggested topics of discussion

While this outline may be considered a general guideline for the course, topics may be
covered in any order, at the Instructor’s discretion/preference.

0. Review (Strongly Recommended)
Loops
Control Structures
Arrays
Functions/Function Calls
Classes

1. Problem Analysis (Chapter 9)
a. Problem Specifications
b. Design
c. Algorithmic Design & Analysis

i. Big O Notation
ii. Asymptotic Complexity Analysis
iii. Space Complexity (Memory)

d. Simple Array Searching and Sorting
i. Complexity Analysis

1. Linear Search vs. Binary Search
2. Selection Sort vs. Bubble Sort

ii. Hash Tables
2. STL (Standard Template Library)

a. What is it and why we like it
i. Reusable Templates

3. Pointers (Chapter 10)
a. Pointers vs Variables

i. Address vs Value
b. Dynamic Variables
c. Dynamic Arrays
d. Pointer Arguments to Functions
e. Function Pointers

4. Basic Data Structures
a. Abstract Data Types
b. Unordered Container Classes

i. Bag
ii. List

1. ArrayList
2. Linked List
3. Doubly Linked List

c. Ordered Containers
i. Stack

1. ArrayStack
2. ListStack
3. Practical Applications: Depth First Search

ii. Queue
1. Array Queue/Circular Queue
2. List Queue
3. Double-Ended Queue
4. Practical Applications : Breadth First Search

d. Intro to Trees (Chapter 20)
i. Binary Trees

1. Array Implementation
2. Node Class Implementation

5. Recursion (Chapter 14)
a. Recursion vs Iteration
b. Recursive Functions

i. Base Case vs Typical/Non-base Case
c. Solving Problems Recursively

i. Recursive Selection Sort
1. Vs Iterative Selection Sort
2. Complexity Analysis

ii. Recursive Binary Search
1. vs Iterative Binary Search
2. Complexity Analysis

d. Recursion & Trees (Chapter 20)
i. Recursive Depth First Search
ii. Tree Traversal

1. Pre-order
2. In-order
3. Post-Order

e. Algorithm: QuickSort
i. Complexity Analysis
ii. Vs other sorting algorithms

6. Advanced Data Structures (Reach Goal)
a. More Sophisticated Trees

i. B-Trees
ii. Red/Black Trees

b. Heap
c. Priority Queue
d. Advanced Searching & Sorting

i. MergeSort
ii. HeapSort
iii. Searching HashTables

