Course number and name:	CS 06395 Operating Systems
Credits and contact hours:	3 credits / 3 contact hours
Course Coordinator:	Patrick McKee
Instructional Materials:	Modern Operating Systems, 4th, Andrew
	Tanenbaum and Herbert Bos, 2015.

Specific course information

Catalog description:	The course concentrates on the design and functions of the operating systems of multi-user computers. Its topics include time sharing methods of memory allocation and protection, files, CPU scheduling, input-output management, interrupt handling, deadlocking and recovery and design principles. The course discusses one or more operating systems for small computers, such as UNIX.	
Prerequisites:	CS 04222 Data Structures and Algorithms and CS 06205 Computer Organization	
Type of Course:	\boxtimes Required \square Elective \square Selected Elective	

Educational objectives for the course

- 1. **context switching.** The student has been able to accurately explain the role of context switching in an operating system and how/when the operating system decides which process to switch to.
 - ABET (1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
 - ABET (3) Communicate effectively in a variety of professional contexts.
- 2. **deadlocks**. The student has demonstrated an understanding on how to detect, prevent, and solve (using multiple methods) deadlocks that occur in an operating system.
 - ABET (1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
 - ABET (3) Communicate effectively in a variety of professional contexts.
- 3. **memory management**. The student has explained multiple ways that an operating system can allocate an address space to a process and how virtual memory is managed via page eviction algorithms.
 - ABET (1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
 - ABET (3) Communicate effectively in a variety of professional contexts.
- 4. **OS theory**. The students should have an understanding of operating system's theory and implementation.
 - ABET (2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.

- 5. **hardware**. The students have described the hardware components of modern computing environments and their individual functions.
 - ABET (2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- 6. **OS functionality**. The students have described the role and basic functions of an operating system, and how operating systems interact with hardware and software applications.
 - ABET (2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- 7. **OS security**. The students have identified and described basic security issues of operating systems.
 - ABET (4) Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.

Required list of topics to be covered

- 1. Application processes and threads; Process/Thread Management
 - a. Race conditions
 - b. Semaphores
 - c. Scheduling algorithms
 - d. Privileged and non-privileged states
 - e. Domain separation, process isolation, resource encapsulation, least privilege
 - f. Inter-process communication
 - g. Message passing systems
- 2. Memory (real, virtual, and management)
 - a. Memory hierarchy
 - b. Bitmaps
 - c. Memblocks
 - d. Heap allocation and freeing
 - e. Stack allocation and freeing
 - f. Virtual memory
 - g. Page eviction algorithms
- 3. Files systems
 - a. File construction
 - b. Inodes
 - c. FAT file systems
 - d. Journaling systems
- 4. Input/output
 - a. Hardware components
 - b. Interrupt driven I/O
 - c. Port-mapped I/O
 - d. DMA systems

- e. Device independent OS layers
- f. Hardware clocks
- 5. Deadlocks
 - a. Deadlock definition
 - b. Modeling
 - c. Detection and recovery
 - d. Distributed system concepts
- 6. OS Programming
 - a. Virtualization / hypervisors
 - b. Creation and operation of a virtualized development environment
 - c. Programming direct control of memory access
 - d. Port-map programming
- 7. Security
 - a. Fundamental security design principles as applied to an OS
 - b. Access controls (models and mechanisms)
 - c. Real-time operating systems
 - d. Distributed OS architectures
 - e. Buffer overflows
 - f. Monitoring and logging systems software