Course number and name:	
	Fundamentals, Principles and
	Applications
Credits and contact hours:	3 credits / 3 contact hours
Faculty Coordinator:	Vahid Heydari
Text book, title, author, and year:	Fundamentals of Information Systems
-	Security, Third Edition, by David Kim
	and Michael G. Solomon, 2018

Specific course information

Catalog description:	This course exposes students to the principles of cyber-security and will introduce a wide range of security activities, methodologies, and procedures. The topics covered in the course include fundamental concepts of computer security, principles of cryptography, software security and trusted systems, network security as well as other topics.
Prerequisites:	(MATH 03160 Discrete Structures <i>or</i> MATH 03150 Discrete Mathematics) <i>and</i> CS 06205 Computer Organization

Type of Course: \square Required \square Elective \square Selected Elective

Specific goals for the course:

- 1. Describe the fundamental concepts of the cyber security discipline and use to provide system security.
- 2. Describe potential system attacks and the actors that might perform them.
- 3. Describe cyber defense tools, methods and components and apply cyber defense methods to prepare a system to repel attacks.
- 4. Describe appropriate measures to be taken should a system compromise occur.
- 5. Properly use the Vocabulary associated with cyber security.
- 6. Define the principles of cybersecurity.
- 7. Identify the bad actors in cyberspace and compare and contrast their resources, capabilities/techniques, motivations and aversion to risk.
- 8. Describe the basic security implications of modern computing environments.

Required list of topics to be covered:

- 1. Threats and Adversaries (threat actors, malware, natural phenomena)
- 2. Vulnerabilities and Risk management (include backups and recovery)
- 3. Common Attacks
- 4. Basic Risk Assessment
- 5. Security Life-Cycle

- 6. Applications of Cryptography and PKI
- 7. Data Security (in transmission, at rest, in processing)
- 8. Security Models
- 9. Access Control Models
- 10. Confidentiality, Integrity, Availability, Access, Authentication, Authorization, Non-Repudiation, Privacy
- 11. Security Mechanisms (e.g., Identification/Authentication, Audit)
- 12. Malicious activity detection / forms of attack
- 13. Appropriate Countermeasures
- 14. Cybersecurity Principles
- 15. Endpoint protection
- 16. Storage Devices
- 17. System Architectures
- 18. Alternative environments (SCADA, real time systems, critical infrastructures)
- 19. Networks (Internet, LANs, wireless)
- 20. Software Security (secure coding principles, software issues by type)
- 21. Configuration Management
- 22. Patching
- 23. Vulnerability Scanning (core)
- 24. People and security (social engineering)
- 25. Physical and environmental security concerns
- 26. Internet Of Things (IOT)
- 27. Motivations and Techniques
- 28. The Adversary Model (resources, capabilities, intent, motivation, risk aversion, access)
- 29. Types of Attacks (and vulnerabilities that enable them)
- 30. Events that indicate an attack is/has happened
- 31. Attack Timing
- 32. Attack surfaces / vectors, and trees
- 33. Covert Channels
- 34. Social Engineering
- 35. Insider problem
- 36. Threat Information Sources (e.g., CERT)
- 37. Access controls (models and mechanisms)
- 38. Creation and operation of virtualization technology