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Abstract Twin support vector machine (TSVM), least
squares TSVM (LSTSVM) and energy-based LSTSVM
(ELS-TSVM) satisfy only empirical risk minimization prin-
ciple. Moreover, the matrices in their formulations are
always positive semi-definite. To overcome these prob-
lems, we propose in this paper a robust energy-based
least squares twin support vector machine algorithm, called
RELS-TSVM for short. Unlike TSVM, LSTSVM and ELS-
TSVM, our RELS-TSVM maximizes the margin with a
positive definite matrix formulation and implements the
structural risk minimization principle which embodies the
marrow of statistical learning theory. Furthermore, RELS-
TSVM utilizes energy parameters to reduce the effect of
noise and outliers. Experimental results on several synthetic
and real-world benchmark datasets show that RELS-TSVM
not only yields better classification performance but also has
a lower training time compared to ELS-TSVM, LSPTSVM,
LSTSVM, TBSVM and TSVM.
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1 Introduction

Support vector machines (SVMs) [2, 4, 5, 34, 35], have
already gained a great deal of attention due to their good
generalization ability on high dimensional data. There
are three key elements which make SVMs successful: (i)
maximizing the margin around the separating hyperplane
between two classes that leads to solving a convex quadratic
programming problem (QPP), (ii) dual theory makes intro-
ducing the kernel function possible, (iii) and kernel trick is
applied to solve nonlinear case. One of the main challenges
for SVM is the large computational complexity of QPP. This
drawback restricts the application of SVM to large-scale
problems. To reduce the computational complexity of SVM,
various algorithms with comparable classification abilities
have been proposed, including SVMlight [13], SMO [25],
Chunking algorithm [4], LIBSVM [3], Lagrangian SVM
(LSVM) [19], Reduced SVM (RSVM) [17], Smooth SVM
(SSVM) [18], Proximal SVM [8], LPSVR [31] and others.

Recently, research on nonparallel hyperplane classifiers
has been an interesting trend. Unlike the standard SVM,
which uses a single hyperplane, some recently proposed
approaches, such as the generalized eigenvalue proximal
support vector machine (GEPSVM) [20] and twin sup-
port vector machine (TSVM) [12], use two nonparallel
hyperplanes. Experimental results show that the nonparallel
hyperplanes can effectively improve the performance over
SVM [12, 20]. Due to its strong generalization ability, some
scholars proposed variants of TSVM [1, 11, 14, 15, 21, 24,
27, 28, 30, 32, 33, 36, 37]. Specifically, least squares twin
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support vector machine (LSTSVM) [14] has been proposed
as a way to replace the convex QPPs in TSVM with a con-
vex linear system by using the squared loss function instead
of the hinge one, leading to very fast training speed. How-
ever, LSTSVM is sensitive to noise and outliers due to the
construction of the constraints of LSTSVM that require the
hyperplane to be at distance of exactly 1 from the points
of the other class. Recently, Nasiri et al. [23] proposed an
energy-based model of LSTSVM (ELS-TSVM) by intro-
ducing an energy term for each hyperplane to reduce the
effect of noise and outliers. ELS-TSVM not only considers
the different energy for each class, it also handles unbal-
anced datasets [23]. Different from TSVM, LSTSVM and
ELS-TSVM, Shao et al. [28, 29] introduces an extra regu-
larization term to each objective function in twin bounded
support vector machine (TBSVM) and least squares recur-
sive projection twin support vector machine (LSPTSVM),
ensuring the optimization problems are positive definite and
resulting in better generalization ability.

In this paper, we present an improved version of ELS-
TSVM [23], called robust energy-based least squares twin
support vector machines (RELS-TSVM). Our RELS-TSVM
possesses the following attractive advantages:

• Unlike TSVM, LSTSVM and ELS-TSVM, our RELS-
TSVM introduces regularization term to each objective
function with the idea of maximizing the margin. Fur-
thermore, the structural risk minimization principle is
implemented in our formulation due to this extra term
which embodies the marrow of statistical learning the-
ory.

• Similar to ELS-TSVM, our RELS-TSVM also intro-
duces an energy for each hyperplane to reduce the effect
of noise and outliers which makes our algorithm more
robust.

• Our RELS-TSVM solves two systems of linear equa-
tions rather than solving two quadratic programming
problems (QPPs) in TSVM and TBSVM, and one
large QPP in SVM, which makes the learning speed of
RELS-TSVM faster than TBSVM, TSVM and SVM.

• The decision function of our RELS-TSVM is obtained
directly from the primal problems. However, perpen-
dicular distance is calculated to obtain the decision
function in LSPTSVM, LSTSVM, TBSVM and TSVM.

• Our RELS-TSVM does not require any special opti-
mizer.

Numerical experiments on several benchmark datasets show
that our RELS-TSVM gains better classification ability with
less training time in comparison with TSVM, TBSVM,
LSTSVM, LSPTSVM and ELS-TSVM.

The rest of this paper is organized as follows. Section 2
provides a brief introduction to TSVM, LSTSVM and
ELS-TSVM formulations. Section 3 describes the detail

of RELS-TSVM, including linear and nonlinear versions.
Numerical experiments are performed and their results are
compared with TSVM, TBSVM, LSTSVM, LSPTSVM and
ELS-TSVM in Section 4. Finally, we conclude our work in
Section 5.

2 Background

In this section, we give a brief outline of TSVM, LSTSVM
and ELS-TSVM formulations. For a more detailed descrip-
tion, the interested readers can refer to [12, 14, 23] .

2.1 Twin support vector machines (TSVM)

Suppose that all the data points in class +1 are denoted by
a matrix A ∈ Rm1×n, where the ith row Ai ∈ Rn, and the
matrix B ∈ Rm2×n represents the data points of class -1.
Unlike SVM, the linear TSVM [12] seeks a pair of non-
parallel hyperplanes

f1(x) = wt
1x + b1 and f2(x) = wt

2x + b2 (1)

such that each hyperplane is close to the data points of one
class and far from the data points of other class, where w1 ∈
Rn, w2 ∈ Rn, b1 ∈ R and b2 ∈ R. The formulation of
TSVM can be written as follows:

min
(w1,b1)∈Rn+1

1

2
‖Aw1 + e2b1‖2 + c1 ‖ξ1‖

s.t. − (Bw1 + e1b1) + ξ1 ≥ e1, ξ1 ≥ 0 (2)

and

min
(w2,b2)∈Rn+1

1

2
‖Bw2 + e1b2‖2 + c2 ‖ξ2‖

s.t. (Aw2 + e2b2) + ξ2 ≥ e2, ξ2 ≥ 0 (3)

respectively, where c1, c2 are positive parameters and e1, e2
are vectors of one of appropriate dimensions. The idea in
TSVM is to solve two QPPs (2) and (3), each of the QPPs
in the TSVM pair is a typical SVM formulation, except that
not all data points appear in the constraints of either problem
[12].

In order to derive the corresponding dual problems,
TSVM assumes that the matricesGtG andHtH are nonsin-
gular, where G = [A e2] and H = [B e1] are augmented
matrices of sizesm1×(n+1) andm2×(n+1), respectively.
Under this extra condition, the dual problems are

max
α∈Rm2

et
1α − 1

2
αtH

(
GtG

)−1
Htα

s.t. 0 ≤ α ≤ c1 (4)
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and

max
γ∈Rm1

et
2γ − 1

2
γ tG

(
HtH

)−1
Gtγ

s.t. 0 ≤ γ ≤ c2 (5)

respectively.
In order to deal with the case whenGtG orHtH is singu-

lar and avoid the possible ill conditioning, the inverse matri-
ces (GtG)−1 and (H tH)−1 are approximately replaced by
(GtG + δI )−1 and (H tH + δI )−1, respectively, where δ

is a very small positive scalar and I is an identity matrix of
appropriate dimensions. Thus, the above dual problems are
modified as:

max
α∈Rm2

et
1α − 1

2α
tH

(
GtG + δI

)−1
Htα

s.t. 0 ≤ α ≤ c1 (6)

and

max
γ∈Rm1

et
2γ − 1

2
γ tG

(
HtH + δI

)−1
Gtγ

s.t. 0 ≤ γ ≤ c2 (7)

respectively.
Thus, the nonparallel proximal hyperplanes are obtained

from the solution α and γ of (6) and (7) by
[

w1

b1

]
= −(

GtG + δI
)−1

Htα and

[
w2

b2

]

= (
HtH + δI

)−1
Gtγ. (8)

The dual problems for (4) and (5) are derived and solved in
[12].

A new sample x ∈ Rn is assigned to a class i(i =
+1, −1) by comparing the following perpendicular distance
measure of it from the two hyperplanes (1):

Class i = argmin
i=1,2

|xtwi+bi |||wi || . (9)

Experimental results show that the performance of
TSVM is better than the conventional SVM and GEPSVM
on UCI machine learning datasets. The case of nonlinear
kernels is handled similar to linear kernels [12].

2.2 Least squares twin support vector machines
(LSTSVM)

Similar to TSVM, least squares TSVM (LSTSVM) [14] also
seeks a pair of non-parallel hyperplanes (1). It assigns the
training points to the closer one of two non-parallel proxi-
mal hyperplanes and pushes them apart from the distance of
1. LSTSVM is an extremely fast and simple algorithm that
requires only solution of a system of linear equations for
generating both linear and non-linear classifiers. By replac-
ing the inequality constraints with equality constraints and

taking the squares of 2-norm of slack variables instead of
1-norm, the primal problems of LSTSVM can be expressed
as

min
(w1,b1)∈Rn+1

1

2
‖Aw1 + e2b1‖2 + c1

2
‖ξ1‖2

s.t. − (Bw1 + e1b1) + ξ1 = e1, (10)

min
(w2,b2)∈Rn+1

1

2
‖Bw2 + e1b2‖2 + c2

2
‖ξ2‖2

s.t. (Aw2 + e2b2) + ξ2 = e2. (11)

The linear LSTSVM completely solves the classifica-
tion problem with just two matrix inverses of much smaller
dimension of order (n + 1) × (n + 1) [14]. Once we get the
solutions of (10) and (11), the two nonparallel hyperplanes
are obtained by solving two systems of linear equations:
[

w1

b1

]
= − [

c1Q
tQ + P tP

]−1
c1Q

te1, (12)

[
w2

b2

]
= [

c2P
tP + QtQ

]−1
c2P

te2, (13)

where c1 and c2 are positive penalty parameters, P = [A e]
and Q = [B e].

2.3 Energy-based least squares twin support vector
machines (ELS-TSVM)

Least squares twin support vector machines (LSTSVM)
are sensitive to noise and outliers in the training dataset.
Recently, Nasiri et al. [23] proposed a novel energy-based
model of LSTSVM (ELS-TSVM) by introducing an energy
term for each hyperplane to reduce the effect of noise and
outliers.

The linear ELS-TSVM comprises of the following pair
of minimization problems:

min
(w1,b1)∈Rn+1

1

2
‖ Aw1 + eb1 ‖2 +c1

2
ξ t
1ξ1

s.t. − (Bw1 + eb1) + ξ1 = E1, (14)

min
(w2,b2)∈Rn+1

1

2
‖ Bw2 + eb2 ‖2 +c2

2
ξ t
2ξ2

s.t. (Aw2 + eb2) + ξ2 = E2, (15)

where c1 and c2 are positive parameters, E1 and E2 are
energy parameters of the hyperplanes. Let us first discuss
ELS-TSVM with LSTSVM.

• The constraints of ELS-TSVM and LSTSVM are differ-
ent. The constraints of LSTSVM require the hyperplane
to be at a distance of exactly 1 from points of other
class that makes LSTSVM be sensitive to outliers. On
the other hand, ELS-TSVM introduces an energy term
for each hyperplane and different energy parameters are
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selected according to prior knowledge or grid search
method to reduce the effect of noise and outliers.

• The decision function of ELS-TSVM is obtained
directly from the primal problems. However, the per-
pendicular distance is calculated to obtain the decision
function in LSTSVM.

• Both ELS-TSVM and LSTSVM are least squares ver-
sion of TSVM to replace the convex QPPs in TSVM
with a convex linear systems. This makes ELS-TSVM
and LSTSVM algorithms extremely fast with general-
ization performance better than TSVM.

On substituting the equality constraints into the objective
function, QPP (14) becomes:

L1 = 1

2
‖ Aw1 + eb1 ‖2 +c1

2
‖ Bw1 + eb1 + E1 ‖2 . (16)

Setting the gradient of (16) with respect to w1 and b1 to zero
gives the solution of QPP (14) as follows:

[
w1

b1

]
= − [

c1Q
tQ + P tP

]−1
c1Q

tE1, (17)

where P = [A e] and Q = [B e].
In an exactly similar way the solution of QPP (15) can be

obtained as follows:
[

w2

b2

]
= [

c2P
tP + QtQ

]−1
c2P

tE2. (18)

A new sample xi is assigned to a class i(i = +1, −1),
depending on the following decision function:

f (xi) =

⎧
⎪⎨

⎪⎩

+1 if | xiw1+eb1
xiw2+eb2

| ≤ 1

−1 if | xiw1+eb1
xiw2+eb2

| > 1
(19)

where |.| is the absolute value.
The solutions of (17) and (18) demand the computation

of the inverse matrices [c1QtQ+P tP ] and [c2P tP +QtQ]
of order (n + 1) respectively, and thus may not be well
conditioned in some situations. To overcome this difficulty,
a regularization term δI is introduced so that the matrices
become positive definite with δ > 0 being chosen to be very
small.

For a detailed study on ELS-TSVM, the interested reader
is referred to [23].

3 Robust energy-based least squares twin support
vector machines (RELS-TSVM)

The constraints of LSTSVM require the hyperplane to be at
a distance of exactly 1 from data points of the other class.
This makes LSTSVM sensitive to outliers. To address this
problem, ELS-TSVM introduces an energy term for each

hyperplane to reduce the effect of noise and outliers. How-
ever, each of them involves the empirical risk minimization
principle, which easily leads to the overfitting problem, and
reduces the prediction accuracies of classifiers. To over-
come this difficulty, we add an extra regularization term
to each objective function and present a new algorithm
called robust energy-based least squares twin support vector
machines (RELS-TSVM) for classification problems which
makes our algorithm robust to noise and outliers.

3.1 Linear RELS-TSVM

By introducing the regularization terms to the framework
of ELS-TSVM, the linear RELS-TSVM comprises of the
following pair of minimization problems:

min
(w1,b1)∈Rn+1

1

2
‖ Aw1 + eb1 ‖2 +c1

2
ξ t
1ξ1 + c3

2

∥∥∥∥

[
w1

b1

]∥∥∥∥

2

s.t. − (Bw1 + eb1) + ξ1 = E1, (20)

min
(w2,b2)∈Rn+1

1

2
‖ Bw2 + eb2 ‖2+c2

2
ξ t
2ξ2+

c4

2

∥∥∥∥

[
w2

b2

]∥∥∥∥

2

s.t. (Aw2 + eb2) + ξ2 = E2, (21)

where c1, c2, c3 and c4 are positive parameters, E1 and E2

are energy parameters of the hyperplanes.

3.1.1 Discussion on RELS-TSVM

It is well known that the classical SVM implements
the structural risk minimization principle. However, ELS-
TSVM only implements empirical risk minimization which
makes it less robust. To overcome this problem, we intro-
duce a regularization term to each objective function with
the idea of maximizing the margin, ensuring the optimiza-
tion problems in our RELS-TSVM are positive definite and
implements the structural risk minimization principle. Sim-
ilar to ELSTSVM, our RELS-TSVM also uses an energy
term for each hyperplane to reduce the effect of noise
and outliers which makes our algorithm more robust than
LSTSVM and TSVM. The decision function similar to
ELS-TSVM is obtained directly from the primal problems.
However, the perpendicular distance is calculated to obtain
the decision function in LSTSVM and TSVM. Our RELS-
TSVM solves two systems of linear equations rather than
solving two quadratic programming problems (QPPs) in
TSVM and one large QPP in SVM, which makes the learn-
ing speed of RELS-TSVM faster than TSVM and SVM. We
also extend our numerical experiments for nonlinear ker-
nel. It is worthwhile to note that our RELS-TSVM does not
require any special optimizer.
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On substituting the equality constraints into the objective
function, QPP (20) becomes:

L1 = 1

2
‖ Aw1 + eb1 ‖2 +c1

2
‖ Bw1

+eb1 + E1 ‖2 +c3

2

∥∥∥∥

[
w1

b1

]∥∥∥∥

2

. (22)

By taking the partial derivatives with respect to w1 and b1,
we get

At(Aw1+eb1)+c1B
t(E1 +Bw1+eb1)+c3w1 = 0, (23)

et (Aw1 + eb1) + c1e
t (E1 + Bw1 + eb1) + c3b1 = 0. (24)

On combining (23) and (24), we obtain
[

At

et

] ([
A e

] [
w1

b1

])
+ c1

[
Bt

et

] (
E1+

[
B e

] [
w1

b1

])

+ c3

[
w1

b1

]
=0. (25)

Let z1 =
[

w1

b1

]
, P = [A e] and Q = [B e], the solution

becomes:

z1 = −(c1Q
tQ + P tP + c3I )−1c1Q

tE1. (26)

In a similar way, one obtains the solution of QPP (21) as
follows:

z2 = (c2P
tP + QtQ + c4I )−1c2P

tE2. (27)

Once two vectors z1 and z2 are obtained, the training
stage of linear RELS-TSVM is completed. The label of an
unknown data point xi is obtained as in (19).

Remark 1 It should be pointed out that both (c1Q
tQ +

P tP + c3I ) and (c2P
tP + QtQ + c4I ) are positive def-

inite matrices due to the extra regularization term, which
makes our RELS-TSVMmore robust and stable than that of
LSTSVM and ELS-TSVM.

3.2 Nonlinear RELS-TSVM

In order to extend our results to nonlinear case, we consider
the following kernel-generated surfaces:

K(xt , Ct )w1 + b1 = 0 and K(xt , Ct )w2 + b2 = 0, (28)

where C = [A ; B] and K is an appropriately chosen
kernel.

Similar to the linear case, the above two kernel-generated
surfaces are obtained through the following two QPPs:

min
(w1,b1)∈Rm+1

1

2
‖ K(A, Ct )w1 + eb1 ‖2 + c1

2
ξ t
1ξ1 + c3

2

∥∥
∥∥

[
w1
b1

]∥∥∥∥

2

s.t. − (K(B, Ct )w1 + eb1) + ξ1 = E1, (29)

min
(w2,b2)∈Rm+1

1

2
‖ K(B, Ct )w2 + eb2 ‖2 + c2

2
ξ t
2ξ2 + c4

2

∥∥
∥∥

[
w2
b2

]∥∥
∥∥

2

s.t. (K(A, Ct )w2 + eb2) + ξ2 = E2, (30)

where K(A, Ct ) and K(B, Ct ) are kernel matrices of sizes
m1 × m and m2 × m respectively, where m = m1 + m2.

Similar to the linear case, the solutions of (29) and (30)
are

z1 = −(c1N
tN + MtM + c3I )−1c1N

tE1 (31)

z2 = (c2M
tM + NtN + c4I )−1c2M

tE2 (32)

respectively, where N = [K(B, Ct ) e] and M =
[K(A, Ct ) e].

Note that both matrices (c1N
tN + MtM + c3I ) and

(c2M
tM + NtN + c4I ) are positive definite, which makes

our nonlinear RELS-TSVMmore robust and stable than that
of LSTSVM and ELS-TSVM.

Further, it can be noted that the solution of nonlinear
RELS-TSVM requires inversion of matrix size (m + 1) ×
(m+1) twice. Therefore, to reduce the computation cost, the
Sherman-Morrison-Woodbury (SMW) formula [9] is used
to approximate (31) and (32) as

z1 = −
(

S − SNt

(
I

c1
+ NSNt

)−1

NS

)

× c1N
tE1 (33)

z2 =
(

T − T Mt

(
I

c2
+ MT Mt

)−1

MT

)

×c2M
tE2 (34)

where S = (MtM + c3I )−1 and T = (NtN + c4I )−1.
In order to reduce the dimensionality in our nonlinear

RELS-TSVM, a reduced kernel technique [17] may also be
useful if the size of the training data becomes very large.

Unlike ELS-TSVM, our RELS-TSVM need not care
about matrix singularity. It is worthwhile to note that c3 and
c4 are used as penalty parameters rather than perturbation
terms.

Once the two vectors z1 and z2 are obtained, the train-
ing stage of nonlinear RELS-TSVM is completed. The label
of an unknown data point xi is assigned to class i(i =
+1, −1), depending on the following decision function.

f (xi) =

⎧
⎪⎨

⎪⎩

+1 if |K(xi ,C
T )w1+eb1

K(xi ,C
T )w2+eb2

| ≤ 1

−1 if |K(xi ,C
T )w1+eb1

K(xi ,C
T )w2+eb2

| > 1
(35)

where |.| is the absolute value.

4 Numerical experiments

In this section, we present experimental results on several
synthetic and real-world benchmark datasets to analyze the
classification accuracies and computational efficiencies of
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our RELS-TSVM. We focus on the comparisons between
our RELS-TSVM and some related classifiers, including
ELS-TSVM [23], LSPTSVM [29], LSTSVM [14], TBSVM
[28] and TSVM [12]. All the experiments are carried out
in MATLAB R2010a on a PC with 2.27 GHz Intel(R)
Xeon(R) processor and 3 GB of RAM. In the case of a non-
linear kernel, the Gaussian kernel function is employed as
it is often employed and yields great generalization perfor-
mance. Then classification accuracy of each algorithm is
computed using ten-fold cross-validation [7].

4.1 Parameters selection

An important problem is the parameter selection of these
six algorithms. The classification performance depends
heavily on the choices made regarding the kernel func-
tions and its parameter values. We choose optimal val-
ues of the parameters by the grid search method [10].
For the six algorithms, the Gaussian kernel parameter μ

is selected from the sets {2i |i = −10,−9, ..., 10}. The
value of the parameters c(1,2,3,4) and E(1,2) for both lin-
ear as well as nonlinear kernel were selected from the sets
{2i |i = −5, −3, −1, 0, 1, 3, 5} and {0.6, 0.7, 0.8, 0.9, 1}
respectively. To decrease the computational cost of the
parameter selection, we set c1 = c2 for TSVM, LSTSVM
and ELS-TSVM and c1 = c2, c3 = c4 for TBSVM,
LSPTSVM and our RELS-TSVM.

4.2 Experimental results and discussion

The experimental results on several synthetic and bench-
mark datasets for linear and Gaussian kernel are summa-
rized in Tables 1 and 2, respectively, where “Acc.” denotes
the mean value of ten times testing results, and “Time”
denotes the training time.

4.2.1 Synthetic datasets

We consider a simple two dimensional “Cross Planes”
dataset as an example of synthetic dataset which was also

tested in [14, 20, 28, 32]. It was generated by perturbing
points lying on two intersecting lines and the intersection
point is not in the center. It is easy to see from Table 1
that the result of the proposed RELS-TSVM is more rea-
sonable than that of ELS-TSVM. This clearly indicates that
our RELS-TSVM can handle the “Cross Planes” dataset
much better than ELS-TSVM. The second example is an
artificially-generated Ripley’s synthetic dataset [26]. It is a
two dimensional dataset which includes 250 patterns. One
observes from Tables 1 and 2 that our RELS-TSVM obtains
better classification performance with less training time
than other algorithms.

4.2.2 UCI datasets

We performed numerical experiments to demonstrate the
performance of our RELS-TSVM in comparison to TSVM,
TBSVM, LSTSVM, LSPTSVM and ELS-TSVM on several
publicly available benchmark datasets [22]. In all the real-
world examples considered, each attribute of the original
data is normalized as follows:

x̄ij = xij − xmin
j

xmax
j − xmin

j

,

where xij is the (i,j)-th element of the input matrix
A, x̄ij is its corresponding normalized value. xmin

j =
minm

i=1(xij ) and xmax
j = maxm

i=1(xij ) denote the mini-
mum and maximum values, respectively, of the j-th column
of A. Clearly, one observes from Table 1 that, in com-
parison to TSVM, TBSVM, LSTSVM, LSPTSVM and
ELS-TSVM, our RELS-TSVM shows better generaliza-
tion performance. For Heart-c dataset, our RELS-TSVM
(accuracy 70.83 % time 0.0028 s) outperforms other five
algorithms either in terms of time, accuracy or both i.e.,
TSVM (accuracy 69.17 % time 0.1530 s), TBSVM (accu-
racy 71.67 % time 0.0032 s), LSTSVM (accuracy 67.50 %
0.0013 s), LSPTSVM (accuracy 57.50 % time 0.010 s),
and ELS-TSVM (accuracy 65.00 % 0.0035 s). In the
same fashion, for Ionosphere dataset, the experimental

Table 3 Performance comparison of RELS-TSVM with ELS-TSVM

Datasets ELS-TSVM RELS-TSVM

(Train size, Test size) Acc.(%) Acc.(%)

(c1=c2, E1, E2) (c1=c2, c3=c4, E1, E2)

BCI Ia 66.89 81.11

(268 × 5376, 293 × 5376) (23, 0.6, 1.0) (24, 24, 0.7, 0.6)

BCI Ib 48.89 53.41

(200 × 8064, 180 × 8064) (23, 0.6, 0.8) (23, 25, 0.6, 0.8)

Bold type shows the best result
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results by our RELS-TSVM (88.87 %) are higher than
TSVM (84.76 %), TBSVM (85.71 %), LSTSVM (85.71 %),
LSPTSVM (88.57 %) and ELS-TSVM (85.71 %). We
obtained the similar conclusions for Heart-statlog, WPBC,
Pima, Cleve, German, Australian, Transfusion and Sonar
datasets.

Furthermore, one observes from Table 2 that our RELS-
TSVM outperforms TSVM, TBSVM, LSTSVM and ELS-
TSVM using Gaussian kernel. For Votes dataset, one sees
from Table 2, the classification accuracies obtained by our
RELS-TSVM is higher than LSTSVM, ELS-TSVM and is
equal to TSVM and TBSVM but time complexity is still
lower in our RELS-TSVM than TSVM and TBSVM. The
empirical results further reveal that our proposed RELS-
TSVM whose solutions are obtained by solving system of
linear equations, is faster and more robust than others on
most of the datasets. This clearly ranks our approach higher
and more preferable. It is worthwhile to notice that the
values of the parameters c3 and c4 affect the results signif-
icantly and these values are varying in our RELS-TSVM
rather than small fixed positive scalar in TSVM, TBSVM,
LSTSVM and ELS-TSVM.

4.2.3 Applications

In this subsection, we check the integrity of RELS-TSVM
on BCI competition II (Ia, Ib) [16] datasets. The goal of BCI
competition II is to validate signal processing and classifi-
cation methods for Brain Computer Interfaces (BCIs). The
features in dataset Ia were taken from healthy person and in
BCI-Ib from an artificially respirated ALS patient. BCI Ia
training data consist of 268 trials recorded on two different
days mixed randomly. 168 of the overall 268 trials origin
from day 1, the remaining 100 trials from day 2. The train-
ing data matrix contains data of 135 trials belonging to class
0 and 133 trials belonging to class 1. The data matrix dimen-
sion is 268 × 5376. Every line of a matrix contains the data
of one trial, belonging to either of the two classes. The data
values are the time samples of the 6 EEG channels. This
starts with 896 samples from channel 1 and ends with 896
samples from channel 6. The test matrix contains 293 trials
of test data with dimension 293× 5376. Every trial belongs
to either class 0 or class 1. Similar to training data, every
line contains 6 times 896 samples.

The BCI-1b training dataset contains 200 trials, where
each class has 100 trials belonging to the corresponding
class. The data matrix dimension is 200 × 8064. Every line
of a matrix contains the data of one trial, where each trial
contains the time samples of the 7 EEG/EOG channels. This
starts with 1152 samples from channel 1 and ends with 1152
samples from channel 7. The test data matrix contains 180
trials, where the dimension of matrix is 180×8064. The 180
trials belong to either class 0 or class 1. Similar to training

Fig. 1 Performance of RELS-TSVM on energy parameters (E1, E2)

for three classification datasets
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data, every line contains 7 times 1152 samples. For further
details, the interested reader is referred to [16]. The exper-
iment is performed using 10-fold cross-validation to select
the optimal parameters. One observes from Table 3, that our
RELS-TSVM outperforms ELS-TSVM on both BCI-Ia and
BCI-Ib datasets. The above results indicate that our RELS-
TSVM performs better on large neural signal processing
datasets.

4.2.4 Influence of energy parameters E1 and E2

We conduct experiments on Ripley, Ionosphere and Heart-
statlog datasets to investigate the influence of the energy
parameters E1 and E2 on the performance of our RELS-
TSVM. The constraints of LSTSVM require hyperplane to
be at a distance of unity from points of the other class.
This makes it more sensitive to outliers. However, our
RELS-TSVM introduces an energy term for each hyper-
plane E1 and E2, appropriate value of these terms reduce
the sensitivity of the classifier towards noise, thus mak-
ing it more effective and robust. The energy parameters
E1 and E2 are selected using grid search from the range
[0.6, 0.7, 0.8, 0.9, 1.0]. If the certainty of a sample to be
classified in any of the two classes is equal then the pro-
portion E1/E2 will be equal to one. If the proportion
E1/E2 is large then the sample will have higher certainty
to be of class 1 than of class 2 and vice versa. We set
the parameters c1, c2, c3 and c4 as (c1 = c2; c3 = c4)

in Table 1 to capture the effect of energy parameters.
Figure 1 shows the variation of performance with energy
parameters E1 and E2 on Ripley, Ionosphere and Heart-
statlog datasets. It can be observed from Fig. 1a that the

performance of Ripley dataset is better for higher value of
E1 and lower value of E2 which indicate that our clas-
sifier adjusts accordingly to reduce sensitivity of samples
to be misclassified. Figure 1b shows that RELS-TSVM
improves the performance on comparable values of E1 and
E2. Similarly, Fig. 1c shows better performance on Heart-
statlog dataset for higher value of E1 and lower value of E2.
One observes that the performance of the proposed RELS-
TSVM fluctuates when E1 and E2 varies. This fluctuation
shows how hyperplane adjusts and finally at an optimum
energy value how it tends to be more effective towards
noise.

4.2.5 Statistical Analysis

To verify the statistical significance of our RELS-TSVM in
comparison to TSVM, TBSVM, LSTSVM, LSPTSVM and
ELS-TSVM, we use the Friedman test. This test with the
corresponding post hoc tests is pointed out to be a simple,
safe, and robust non parametric test for comparison of more
classifiers over multiple datasets [6]. We use it to compare
the performance of six algorithms. The average ranks of all
the algorithms on accuracies with linear kernel were com-
puted and listed in Table 4. We employ the Friedman test
to check whether the measured average ranks are signifi-
cantly different from the mean rank Rj = 3.5. Under the
null hypothesis, the Friedman statistic

χ2
F = 12N

k (k + 1)

⎡

⎣
4∑

j=1

R2
j − k (k + 1)2

4

⎤

⎦

Table 4 Average ranks of TSVM, TBSVM, LSTSVM, LSPTSVM, ELS-TSVM and our RELS-TSVM with linear kernel on accuracies

Datasets TSVM TBSVM LSTSVM LSPTSVM ELS-TSVM RELS-TSVM

Cross Planes 3.5 1.5 6 1.5 5 3.5

Ripley 3 4 2 5 6 1

Heart-c 3 1 4 6 5 2

Ionosphere 6 4 4 2 4 1

Heart-statlog 3 6 3 3 5 1

Bupa Liver 4.5 1 4.5 2 6 3

WPBC 3 1.5 6 5 4 1.5

Pima-Indians 4 4 6 1.5 4 1.5

Cleve 4 5.5 3 2 5.5 1

German 5 3.5 1.5 6 3.5 1.5

Australian 5 5 2 5 2 2

Transfusion 6 2 3.5 5 3.5 1

Sonar 5 2 6 4 3 1

Average rank 4.23 3.15 3.96 3.69 4.35 1.62
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Table 5 Average ranks of TSVM, TBSVM, LSTSVM, ELS-TSVM and our RELS-TSVM with Gaussian kernel on accuracies

Datasets TSVM TBSVM LSTSVM ELS-TSVM RELS-TSVM

Ripley 2 4.5 3 4.5 1

Heart-c 5 1 3.5 3.5 2

Heart-stat 4 3 1.5 5 1.5

Ionosphere 2.5 5 4 2.5 1

Bupa Liver 4 1 5 3 2

Votes 2 2 4 5 2

WPBC 1.5 3 4 5 1.5

Pima-Indian 3 4 5 2 1

German 5 3.5 3.5 2 1

Australian 2.5 2.5 5 4 1

Haberman 5 4 1.5 3 1.5

Transfusion 3 5 4 2 1

WDBC 5 3 4 2 1

Splice 4 2 3 5 1

CMC 5 4 2 3 1

Average rank 3.57 3.53 3.43 3.16 1.30

is distributed according to χ2
F with k−1 degrees of freedom,

where k is the number of methods and N is the number of
datasets.

χ2
F = 12 × 13

6 (6 + 1)

[

4.232+3.152+3.962+3.692+4.352+1.622− 6 (7)2

4

]

=19.16.

FF = (N − 1) χ2
F

N (k − 1) − χ2
F

= (13 − 1) × 19.16

13 (6 − 1) − 19.16
= 5.015.

With six algorithms and thirteen datasets, FF is dis-
tributed according to the F−distribution with (k − 1) and
(k − 1) (N − 1) = (5, 60) degrees of freedom. The crit-
ical value of F (5, 60) for α = 0.05 is 2.37. Since the
value of FF is larger than the critical value, we reject the
null hypothesis. For further pairwise comparison, we use
the Nemenyi test. At p = 0.10, the critical difference

(CD) = 2.589
√

6×7
6×13 = 1.89. Since the difference between

ELS-TSVM and our RELS-TSVM is larger than the critical
difference (4.35 − 1.62 = 2.73 > 1.89), we conclude that
the generalization performance of RELS-TSVM is supe-
rior to ELS-TSVM. In the same way, we conclude that
our RELS-TSVM is significantly better than LSPTSVM,
LSTSVM and TSVM. Next, we see that the difference
between TBSVM and our RELS-TSVM is slightly smaller
than the critical difference (3.15 − 1.62 = 1.53 < 1.89),
we conclude that the posthoc test is not powerful enough to
detect any significant difference between TBSVM and our
RELS-TSVM.

For further comparisons, we check the performance of
five algorithms statistically on accuracies with Gaussian

kernel. The average ranks of all the algorithms on accura-
cies were computed and listed in Table 5. Under the null
hypothesis, Friedman statistic will be

χ2
F = 12 × 15

5 (5 + 1)

[

3.572+3.532+3.432+ 3.162+1.302− 5 (6)2

4

]

=21.88.

FF = (15 − 1) × 21.88

15 (5 − 1) − 21.88
= 8.035.

With five algorithms and fifteen datasets, FF is dis-
tributed according to the F−distribution with (k − 1) and
(k − 1) (N − 1) = (4, 56) degrees of freedom. The crit-
ical value of F (5, 60) for α = 0.05 is 2.53. Since the
value of FF is larger than the critical value, so we reject
the null hypothesis. For further pairwise comparison, we
use the Nemenyi test. At p = 0.10, the critical difference

(CD) = 2.459
√

5×6
6×15 = 1.42. Since the difference between

TSVM, TBSVM, LSTSVM, ELS-TSVM and our RELS-
TSVM is larger than the critical difference, we conclude that
the generalization performance of RELS-TSVM is superior
to ELS-TSVM. Since the value of FF is larger than the crit-
ical value, we reject the null hypothesis. By the posthoc test,
one concludes that the performance of RELS-TSVM is sig-
nificantly better than ELS-TSVM, LSTSVM, TBSVM and
TSVM.

5 Conclusions

In this paper, we propose an improved version of ELS-
TSVM based on LSTSVM. Different from LSTSVM and



Robust energy-based least squares twin support vector machines 185

ELS-TSVM, we add an extra regularization term to max-
imize the margin, ensuring the optimization problems in
our RELS-TSVM are positive definite and implements
the structural risk minimization principle which embodies
the marrow of statistical learning theory. Two parame-
ters c3 and c4 introduced in our RELS-TSVM are the
weights between the regularization term and the empiri-
cal risk, so that they can be chosen flexibly, improving the
ELS-TSVM and LSTSVM. Unlike LSTSVM, our RELS-
TSVM introduce energy parameters to reduce the effect of
noise and outliers. The superiority of our RELS-TSVM is
demonstrated on several synthetic and real-world bench-
mark datasets showing better classification ability with less
training time in comparison to ELS-TSVM, LSPTSVM,
LSTSVM, TBSVM and TSVM. There are seven parame-
ters in our RELS-TSVM, so the parameter selection is a
practical problem and will need to address in future.
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