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Abstract - A number of morphological shape 
representation algorithms have been proposed over the 
years. However, not many shape matching algorithms have 
been developed based on these representation algorithms. 
In this paper, we present a structural shape matching 
algorithm that uses both internal and external shape 
components selected from the maximal disks determined by 
a traditional and a generalized morphological skeleton 
transforms. The algorithm uses relaxation labeling to 
maintain structural consistency and to derive matching 
scores. The experiments show that the matching algorithm 
produces good matching results and it performs better than 
an earlier algorithm that uses internal components only. 
 
Keywords: mathematical morphology, shape matching, 
shape representation, structural matching, relaxation 
labeling 
 
 
1 Introduction 
 

Mathematical morphology is a shape-based approach to 
image processing. It is only natural that a number of 
morphological shape representation algorithms have been 
proposed [1-8]. Many of these algorithms use the structural 
approach. That is, a given shape is described in terms of its 
simpler shape components and the relationships among the 
components.  

The morphological skeleton transform (MST) is a 
leading morphological shape representation algorithm [1]. 
In the MST, a given shape is represented as a union of all 
maximal disks contained in the shape. The advantages of the 
MST include that it has a simple and intuitive mathematical 
characterization as well as an easy and efficient 
implementation. However, one problem with the MST is 
that there is a great deal of overlapping among the maximal 
disks. Some shape matching algorithms have been 
developed based on the MST [9, 10], but they were only 
demonstrated to work on some simple geometric shapes.  

In a recent paper [11], we described a procedure for 
selecting structural shape components from the collection of 
maximal disks determined by a skeleton transform. We also 
introduced a matching algorithm that uses relaxation 
labeling to maintain and measure structural consistency 

 

 
 

Fig.1. A Chinese coin. 
 
 
 
when mapping the components of one shape to the 
components of another shape. 

When people describe a shape, not only do they 
describe the parts in the shape, but they also describe the 
parts that are not in the shape. For example, the Chinese 
coin shape in Fig. 1 is probably best described as a circular 
shape with a square hole in the middle. In this paper, we 
describe a structural shape representation scheme in which a 
shape is described using both its internal parts and the parts 
that are not in the shape. We also present a matching 
algorithm that uses relaxation labeling to map both internal 
and external components from one shape to another. Some 
preliminary experimental results are also reported. 
 
2 Selection of shape components 
 

For the purpose of matching two shapes, we represent a 
shape as a collection of both internal and external disk 
components and their relationships. An internal component 
of a shape represents an area of the shape while an external 
component represents an area outside the shape. The 
internal disk components are determined using the standard 
morphological skeleton transform. A generalized skeleton 
transform is introduced to determine external shape 
components. 

We first review the standard skeleton transform. For a 
shape image A and a structuring element B, which is used as 
the unit disk, we have  
A = SN O+ NB ∪ SN-1 O+ (N-1)B ∪ … ∪ S2 O+ 2B ∪ S1 O+ B ∪ S0 

                                                                                                                                            (1) 



 

where 
                   Si = (A O- iB) \ ((A O- iB) O B)                           (2) 
and N is the largest integer such that A O- NB ≠ Ø. Each Si is 
called a skeleton subset. Each skeleton point in Si represents 
a maximal disk of size i contained in A. 
        For the unit disk B, the reflection of B is defined as  
                            |                                  (3) 
We now introduce the concept of external skeleton points. 
For a shape image A and the unit disk B, since closing 
operation is extensive, we have  
  A = (A ● Br) \ T0 = ((A O+ Br) O- Br) \ T0 = (A1 O- Br) \ T0     (4) 
where 
                               T0 = (A ● Br) \ A                                   (5) 
and 
                              A1 = A O+ Br.                                           (6) 
Now we can also write  
                          A1 = (A1 ● Br) \ T1                                     (7) 
where 
      T1 = (A1 ● Br) \ A1 = ((A O+ Br) ● Br) \ (A O+ Br).            (8) 
Combining (4) with (7), we have 
              A = (((A1 ● Br) \ T1) O- Br) \ T0 
                  = ((A1 ● Br) O- Br) \ (T1 O+ B) \ T0 
                  = ((((A O+ Br) O+ Br) O- Br) O- Br) \ (T1 O+ B) \ T0 
                  = (A ● 2Br) \ (T1 O+ B) \ T0.                                (9) 
Each point in T0 represents a point that is not in A and each 
point p in T1 represents a disk p O+  B that is not in A. 
Removing all such points and disks results in the restoration 
of A from A ● 2Br. Following similar steps, we have 
     A = (A ● nBr) \ (Tn-1 O+ (n-1)B) \ (Tn-2 O+ (n-2)B) \ …  
           \ (T1 O+ B) \ T0                                                         (10) 
where 
                   Ti = ((A O+ iBr) ● Br) \ (A O+ iBr).                     (11) 
The points in Tn-1, Tn-2, … T1, T0 can be viewed as external 
skeleton points and they represents external disks of 
different sizes. Removal of such disks results in the 
restoration of A from A ● nBr. In fact, these external disks 
are maximal disks contained in the background shape, or the 
complement of A. This transform can be viewed as an 
external skeleton transform. 
        In our implementation of the skeleton transforms, we 
use eight structuring elements shown in Fig. 2, instead of a 
single structuring element, to define discrete disks of 
different sizes to avoid the generation of non-unit width 
skeleton segments. In our implementation, the size zero disk 
0B is defined as {(0, 0)}. The unit disk B is defined as B0 
and size two disk 2B is defined as B0 O+ B1. In general, the 
size i disk iB is defined as  
                   iB = (i – 1)B O+ B(i-1) mod 8, i > 0.                      (12) 
With this new definition, the set of internal skeleton points 
of size i is given by 
                Si = (A O- iB) \ ((A O- iB) O Bi mod 8).                   (13) 
Similarly the new iBr are defined in terms of B0

r, B1
r, … B7

r. 
The formula in (11) now becomes  
               Ti = ((A O+ iBr) ● Br

i mod 8) \ (A O+ iBr).                 (14) 
 

 
    --- --- -+- --- --- --+ --- +--     -*+ -*- -*- -*- +*- -*- -*- -*-     --- +-- --- --+ --- --- -+- ---  
            B0     B1      B2      B3     B4       B5     B6      B7  
 
             Fig. 2. Eight two-point structuring elements. 
 

 
 
 

      
 
      Fig. 3. A rabbit shape and its external components. 
 
 
 
        Not all the maximal disks will be used in the shape 
matching. We only use a small number of internal and 
external disk components to represent a shape. To select the 
internal components, we first create a list of all the internal 
skeleton points. The first internal component C1 is the first 
disk of size N found in the list. The second component C2 is 
the first disk in the list that covers the most area not covered 
by C1. In general, component Cm is the first disk in the list 
that covers the most area not covered by C1, C2, … , Cm-1. 
Let M be the total number of internal disk components 
selected. In our experiments, we set M to 60. Actually, not 
all these M components will be used in the matching 
algorithm. 
        The selection of external components is similar. In our 
implementation, we set n to 50 in (10). We first create a list 
of all the external skeleton points. The first external 
component D1 is the first disk that covers the most area in A 
● 50Br. The second component D2 is the first disk in the list 
that covers the most area in A ● 50Br not covered by D1. In 
general, component Dm is the first disk in the list that covers 
the most area in A ● 50Br not covered by D1, D2, … , Dm-1. 
In our implementation, we select no more than 20 external 
components. Sometimes, we are not able to select 20 
components that all cover non-zero new areas. Fig. 3 shows 
a rabbit shape and its 20 external components. 
        We now define structural distances among the internal 
components. The structural distance from an internal 
component to itself is defined to be 0. The structural 
distance between two internal components Ci and Cj is 1 if 
the two components either overlap or connect to each other. 
We use the notation ds(Ci, Cj) = 1. The structural distance 
between Ci and Cj is n (≥ 2), or ds(Ci, Cj) = n, if ds(Ci, Cj) is 



 

not less than n and there exists an internal component Ck 
such that ds(Ci, Ck) + ds(Cj, Ck) = n. The structural distances 
among the external components are defined similarly. Only 
external components are used to define such distances. The 
structural distance between two components Ei and Ej of 
different types is 1 if the two components connect to each 
other. The structural distance between Ei and Ej is n (≥ 2), or 
ds(Ei, Ej) = n, if ds(Ei, Ej) is not less than n and there exists a 
component Ek of either type such that ds(Ei, Ek) + ds(Ej, Ek) 
= n. Note that structural distances among the components of 
the same type are used to calculate the structural distances 
between the components of different types. 
        The actual number of internal disk components used 
directly in the matching algorithm can be less than M. In our 
experiments, we use first 30 of the M components. The key 
features of a shape can typically be captured using 30 
internal disk components. The reason for using more 
internal disk components to calculate internal structural 
distances is that the results are more accurate. Connected 
components can become disconnected when not all maximal 
disks are used to calculate structural distances. However, it 
seems unnecessary to calculate structural distances for all 
the internal maximal disks. External components play a 
lesser role in the matching algorithm. Therefore, no 
additional external disks are used to calculate structural 
distances. 
        Each of the 30 internal components has a size 
determined by the skeleton transform, but we use the square 
root of the area of each component to represent its size. For 
external components, we use the square root of the area of 
the intersection between a component and A ● 50Br to 
represent its size. The size normalization is performed by 
dividing each size number by the size of the largest internal 
component. If a normalized external component size is 
greater than 1, we convert it to 1. Another relationship that 
we use in the matching is the geometric distance between 
any two components. These distances are also normalized so 
that the maximum distance is 1. Finally, for each component 
we also calculate the directions of all neighboring 
components (with structural distances of 5 or less). Each 
direction represents the angle between the vector from the 
current component to the other component and the x-axis.  
 
3 Shape matching using relaxation 

labeling 
 

Assume that we have two shapes 
        S1 = {C11, C12, … , C1n}                             (15) 

                     S2 = {C21, C22, … , C2m}                   (16) 
where each C1i is a disk component of S1 and C2k is a disk 
component of S2. For each shape, the first 30 of these 
components are internal components and the rest of them 
are external components. In our experiments, we have n ≤ 
50 and m ≤ 50. We want to map each C1i to a C2k, but we 
don’t have enough information to select a unique C2k. We 

use pi(k) to represent our initial confidence in the hypothesis 
“C1i is mapped to C2k” for i = 1, 2, … , n and k = 1, 2, … , 
m. A component can only be mapped to a component of the 
same type. Therefore, pi(k) = 0 for i = 1, 2, … , 30 and k = 
31, 32, … , m and for i = 31, 32, … , n and k = 1, 2, … , 30. 
Other initial confidence values are determined using size 
similarity: 

      1
|size size |

max size , size        17  

for i = 1, 2, … , 30 and k = 1, 2, … , 30 and for i = 31, 32, 
… , n and k = 31, 32, … , m. The normalizing constant Vi is 
defined as 

        1
| size size |

max size , size               18  

for i = 1, 2, … , 30 and  

        1
| size size |

max size , size             19  

for i = 31, 32, … , n. 
        The support from component C1j for the mapping of C1i 
to C2k, where C1i and C2k are of the same type, is defined as 
                                  ∑ ,                                  20   
for j = 1, 2, …, 30 or  
                                 ∑ ,                                 21   
for j = 31, 32, …, n. Note that C1i and C1j can be of different 
types. Two components of different types can support each 
other. In (20) and (21), rij(k, l) represents the strength of 
compatibility between the hypotheses “C1i maps to C2k” and 
“C1j maps to C2l.” Note that C1j and C2l must be of the same 
type. A strong support is received if high confidence 
mappings of C1j are compatible with the mapping of C1i to 
C2k.The compatibility coefficients rij(k, l) are defined in 
terms of properties of and relationships among the 
components involved. We first consider some special cases. 
When i ≠ j, we define rij(k, k) = 0. When i = j, expressions 
(20) and (21) become 
                                ∑ ,                                      22   
and 
                               ∑ ,                                     23   
This is the support for the mapping of C1i to C2k from C1i 
itself. We define rii(k, l) = 0 for k ≠ l. Now expressions (22) 
and (23) become rii(k, k)pi(k). We define rii(k, k) to be the 
similarity between the size of C1i and the size of C2k: 

                   1
|size size |

max size , size
                         24  

We also define rij(k, l) = 0 if the structural distance between 
components C1i and C1j is greater than 5 or the structural 
distance between components C2k and C2l is greater than 5. 
        In general, when i ≠ j and k ≠ l, each rij(k, l) in (20) and 
(21) is a product of four similarity scores: 
                              rij(k, l) = s1s2s3s4                                  (25) 
We now define these scores. Let ds1 be the structural 
distance from C1i to C1j and ds2 be the structural distance 



 

from C2k to C2l. Let e = |ds1 – ds2|. When min(ds1, ds2) ≤ 2, 
we have  

                        

1          if 0
0.75    if 1
0.5       if 2
0           if 3

                             (26) 

When min(ds1, ds2) > 2, we have  

                        

1           if 0    
0.75     if 1, 2
0.5       if 3, 4
0          if 5    

                          (27) 

We are less tolerant to mapping errors in structural distances 
for structurally closer components. Now consider the vector 
from C1i to C1j and the vector from C2k to C2l. Let α be the 
directional difference between the two vectors. When 
min(ds1, ds2) ≤ 2, we define 

                     1       if /3
0                if /3

                        (28) 

When min(ds1, ds2) > 2, we define  

                     1       if /2
0                if /2

                        (29) 

We are less tolerant to directional errors for structurally 
closer components. Let dg1 be the geometric distance from 
C1i to C1j and dg2 be the geometric distance from C2k to C2l. 
We define  

                          1
max ,

                             30  

Finally, let t1 = size(C1i) / size(C1j) and t2 = size(C2k) / 
size(C2l). We define  

                           1
| |

max ,                                  31  

        The support for the mapping of C1i to C2k from all the 
components in S1 is  

      ,

,              32  

for i = 1, 2, …, 30 and k = 1, 2, …, 30 and for i = 31, 32, … 
, n and k = 31, 32, …, m. This is a weighted sum of 
individual supports defined in (20) and (21). The weight wij 
represents the strength of influence of C1j on C1i. In 
calculating this support, we only want to consider the 
contributions of neighboring components with structural 
distances of less than or equal to 5. Therefore, we have wij = 
0 if the structural distance between C1j and C1i is greater 
than 5. Otherwise, the value of wij is defined in terms of the 
component size, size(C1j), and the structural distance ds(C1i, 
C1j): 

                   
size

, 1
                          33  

The normalizing constant Wi is defined as 

                      
size

, 1
                              34  

where Ni = {j | ds(C1i, C1j) ≤ 5} for i = 1, 2, … , n. The larger 
the size of C1j is, the more important the support of C1j is to 
C1i. The larger the structural distance between C1i and C1j is, 
the less important the support of C1j is to C1i. 
        The support values qi(k) are used to adjust the 
confidence values pi(k). Let p0

i(k) be the current set of 
confidence values. The updated set of confidence values 
p1

i(k) are determined using the following formula: 

                              35  

for i = 1, 2, … , 30 and k = 1, 2, … , 30 and 

                              36  

for i = 31, 32, … , n and k = 31, 32, … , m. According to 
(35) and (36), stronger supports will lead to higher 
confidences and weaker supports will lower the 
confidences. A new set of support values can be calculated 
from this new set of confidence values. This process of 
calculating the support values and updating the confidence 
values is repeated. The confidence and support values will 
converge. In our experiments, we use 15 iterations. 
        The value 

                                                                         37  

with i ≤ 30 can be seen as the average support that an 
internal component C1i receives for all its mappings from its 
neighboring components in S1. It’s a weighted sum of 
individual supports for specific mappings. The value 
indicates the level of consistency between the mappings of 
C1i and the mappings of its neighboring components in S1. 
The overall or global consistency score for the whole S1 is 
defined 

                                                    38  

The weight vi indicates the importance of component C1i 
and is defined as 

                  size size                             39  

for i = 1, 2, … , 30. The larger the size of C1i is, the more 
important C1i is in the overall mapping from S1 to S2. We 
use F as a measure of how well components of S1 are 
mapped to components of S2. Note that only internal 
components are used to calculate the global consistency 
score. Due to the discrete nature of our disk definition, the 
external components are not as stable under rotation. 
        To measure how similar the two shapes are to each 
other, we first map components of S1 to components of S2 
and obtain one global consistency score. We then map 
components of S2 to components of S1 and obtain another  



 

                          
 

                          
 

                          
 

                          
 

                          
 

                  
 

                           Fig. 4. Kimia data set. 

 
 
 

                            
 

                    
 

                       
 

Fig. 5. Shape images used in the experiments. 
 
 
 
global consistency score. The average of these two global 
consistency scores is used as a measure of how similar these 
two shapes are to each other. 
        To recognize objects of different orientations, we 
match S1 and its 11 rotated versions with rotation angles of 
iπ / 6, i = 1, 2, …, 11, to S2. The rotation is done to the 
structural representation of S1. The best matching score is 
used to indicate the similarity between S1 and S2. 
 
4 Experiments 

 
We performed matching experiments on the Kimia’s 

data set in Fig. 4. This data set contains 25 shapes from 6  

       Table 1. Matching results on Kimia data set. 
 

Algorithm Top 1 Top 2 Top 3 
Sharvit et al. [12] 23/25 21/25 20/25 
Belonie et al. [13] 25/25 24/25 22/25 
Ling and Jacobs [14] 25/25 24/25 25/25 
Our previous algorithm [11] 25/25 25/25 25/25 
Daliri and Torre [15] 25/25 25/25 25/25 
Our new algorithm 25/25 25/25 25/25 

 
 
 
 

      
                    0.542         0.469         0.420         0.370          0.356  
 

       
                    0.562         0.444         0.381         0.356          0.319   
 

      
                    0.498         0.473         0.453         0.383          0.374   
 

      
                    0.658         0.557         0.495         0.466          0.461  
 

       
                    0.631         0.613         0.572         0.493          0.489  
 

      
                    0.643         0.635         0.635         0.589          0.409  
 

         Fig. 6. Five top matches for several shapes. 

 
 
categories. Table 1 shows our results in comparison with the 
results of some existing algorithms [11-15]. In this 
experiment, we count the number of first, second, and the 
third closest matches that fall into the same category. Our 
results are among the best. 

We also applied our new algorithm and the previous 
algorithm that uses the internal components only on another 
set of 15 shapes. The 15 shapes shown in Fig. 5 belong to 5 
categories with 3 shapes in each category. In this 
experiment, we count the number of first and second closest 
matches that fall into the same category. The algorithm that 



 

uses the internal components only produces 15 correct top 
matches and 14 correct second top matches. Using the new 
algorithm, we have 15 correct top matches and 15 correct 
second top matches. The new algorithm performs better than 
the previous algorithm on this data set. These experiments 
also show that our algorithms (with and without the external 
components) can recognize rotated shapes and our 
algorithms are not very sensitive to scale changes.  

In Fig. 6, we also show several of the shapes from Fig. 
4 along with their 5 best matches and the corresponding 
matching scores. For the most part, the results seem to agree 
well with our intuition. Among shapes from different 
categories, fish shapes and tool shapes are quite similar. 
With the big ears, rabbit shapes and animation shapes look 
quite alike as well.  
 
5 Conclusions 

 
We have developed a structural shape matching 

algorithm that uses both internal and external shape 
components selected from the maximal disks determined by 
a traditional and a generalized morphological skeleton 
transforms. Only a small number of disk components are 
used in shape matching. The matching algorithm uses 
relaxation labeling to optimize the mapping among the 
components of two shapes. The global consistency scores 
are used directly as measures of similarity between shapes. 
Only internal components are used to calculate the global 
consistency scores. The experiments show that the 
algorithm produces good and intuitive matching results. The 
algorithm is tolerant to both rotation and scale changes. This 
algorithm shows improved performances compared to an 
earlier morphological shape matching algorithm that uses 
internal components only. 
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