

Shape Matching Using both Internal and External
Morphological Shape Components

Jianning Xu
Computer Science Department, Rowan University,

Glassboro, NJ 08028, USA

Abstract - A number of morphological shape
representation algorithms have been proposed over the
years. However, not many shape matching algorithms have
been developed based on these representation algorithms.
In this paper, we present a structural shape matching
algorithm that uses both internal and external shape
components selected from the maximal disks determined by
a traditional and a generalized morphological skeleton
transforms. The algorithm uses relaxation labeling to
maintain structural consistency and to derive matching
scores. The experiments show that the matching algorithm
produces good matching results and it performs better than
an earlier algorithm that uses internal components only.

Keywords: mathematical morphology, shape matching,
shape representation, structural matching, relaxation
labeling

1 Introduction

Mathematical morphology is a shape-based approach to
image processing. It is only natural that a number of
morphological shape representation algorithms have been
proposed [1-8]. Many of these algorithms use the structural
approach. That is, a given shape is described in terms of its
simpler shape components and the relationships among the
components.

The morphological skeleton transform (MST) is a
leading morphological shape representation algorithm [1].
In the MST, a given shape is represented as a union of all
maximal disks contained in the shape. The advantages of the
MST include that it has a simple and intuitive mathematical
characterization as well as an easy and efficient
implementation. However, one problem with the MST is
that there is a great deal of overlapping among the maximal
disks. Some shape matching algorithms have been
developed based on the MST [9, 10], but they were only
demonstrated to work on some simple geometric shapes.

In a recent paper [11], we described a procedure for
selecting structural shape components from the collection of
maximal disks determined by a skeleton transform. We also
introduced a matching algorithm that uses relaxation
labeling to maintain and measure structural consistency

Fig.1. A Chinese coin.

when mapping the components of one shape to the
components of another shape.

When people describe a shape, not only do they
describe the parts in the shape, but they also describe the
parts that are not in the shape. For example, the Chinese
coin shape in Fig. 1 is probably best described as a circular
shape with a square hole in the middle. In this paper, we
describe a structural shape representation scheme in which a
shape is described using both its internal parts and the parts
that are not in the shape. We also present a matching
algorithm that uses relaxation labeling to map both internal
and external components from one shape to another. Some
preliminary experimental results are also reported.

2 Selection of shape components

For the purpose of matching two shapes, we represent a
shape as a collection of both internal and external disk
components and their relationships. An internal component
of a shape represents an area of the shape while an external
component represents an area outside the shape. The
internal disk components are determined using the standard
morphological skeleton transform. A generalized skeleton
transform is introduced to determine external shape
components.

We first review the standard skeleton transform. For a
shape image A and a structuring element B, which is used as
the unit disk, we have
A = SN O+ NB ∪ SN-1 O+ (N-1)B ∪ … ∪ S2 O+ 2B ∪ S1 O+ B ∪ S0

 (1)

where
 Si = (A O- iB) \ ((A O- iB) O B) (2)
and N is the largest integer such that A O- NB ≠ Ø. Each Si is
called a skeleton subset. Each skeleton point in Si represents
a maximal disk of size i contained in A.
 For the unit disk B, the reflection of B is defined as
 | (3)
We now introduce the concept of external skeleton points.
For a shape image A and the unit disk B, since closing
operation is extensive, we have
 A = (A ● Br) \ T0 = ((A O+ Br) O- Br) \ T0 = (A1 O- Br) \ T0 (4)
where
 T0 = (A ● Br) \ A (5)
and
 A1 = A O+ Br. (6)
Now we can also write
 A1 = (A1 ● Br) \ T1 (7)
where
 T1 = (A1 ● Br) \ A1 = ((A O+ Br) ● Br) \ (A O+ Br). (8)
Combining (4) with (7), we have
 A = (((A1 ● Br) \ T1) O- Br) \ T0
 = ((A1 ● Br) O- Br) \ (T1 O+ B) \ T0
 = ((((A O+ Br) O+ Br) O- Br) O- Br) \ (T1 O+ B) \ T0
 = (A ● 2Br) \ (T1 O+ B) \ T0. (9)
Each point in T0 represents a point that is not in A and each
point p in T1 represents a disk p O+ B that is not in A.
Removing all such points and disks results in the restoration
of A from A ● 2Br. Following similar steps, we have
 A = (A ● nBr) \ (Tn-1 O+ (n-1)B) \ (Tn-2 O+ (n-2)B) \ …
 \ (T1 O+ B) \ T0 (10)
where
 Ti = ((A O+ iBr) ● Br) \ (A O+ iBr). (11)
The points in Tn-1, Tn-2, … T1, T0 can be viewed as external
skeleton points and they represents external disks of
different sizes. Removal of such disks results in the
restoration of A from A ● nBr. In fact, these external disks
are maximal disks contained in the background shape, or the
complement of A. This transform can be viewed as an
external skeleton transform.
 In our implementation of the skeleton transforms, we
use eight structuring elements shown in Fig. 2, instead of a
single structuring element, to define discrete disks of
different sizes to avoid the generation of non-unit width
skeleton segments. In our implementation, the size zero disk
0B is defined as {(0, 0)}. The unit disk B is defined as B0
and size two disk 2B is defined as B0 O+ B1. In general, the
size i disk iB is defined as
 iB = (i – 1)B O+ B(i-1) mod 8, i > 0. (12)
With this new definition, the set of internal skeleton points
of size i is given by
 Si = (A O- iB) \ ((A O- iB) O Bi mod 8). (13)
Similarly the new iBr are defined in terms of B0

r, B1
r, … B7

r.
The formula in (11) now becomes
 Ti = ((A O+ iBr) ● Br

i mod 8) \ (A O+ iBr). (14)

 --- --- -+- --- --- --+ --- +-- -*+ -*- -*- -*- +*- -*- -*- -*- --- +-- --- --+ --- --- -+- ---
 B0 B1 B2 B3 B4 B5 B6 B7

 Fig. 2. Eight two-point structuring elements.

 Fig. 3. A rabbit shape and its external components.

 Not all the maximal disks will be used in the shape
matching. We only use a small number of internal and
external disk components to represent a shape. To select the
internal components, we first create a list of all the internal
skeleton points. The first internal component C1 is the first
disk of size N found in the list. The second component C2 is
the first disk in the list that covers the most area not covered
by C1. In general, component Cm is the first disk in the list
that covers the most area not covered by C1, C2, … , Cm-1.
Let M be the total number of internal disk components
selected. In our experiments, we set M to 60. Actually, not
all these M components will be used in the matching
algorithm.
 The selection of external components is similar. In our
implementation, we set n to 50 in (10). We first create a list
of all the external skeleton points. The first external
component D1 is the first disk that covers the most area in A
● 50Br. The second component D2 is the first disk in the list
that covers the most area in A ● 50Br not covered by D1. In
general, component Dm is the first disk in the list that covers
the most area in A ● 50Br not covered by D1, D2, … , Dm-1.
In our implementation, we select no more than 20 external
components. Sometimes, we are not able to select 20
components that all cover non-zero new areas. Fig. 3 shows
a rabbit shape and its 20 external components.
 We now define structural distances among the internal
components. The structural distance from an internal
component to itself is defined to be 0. The structural
distance between two internal components Ci and Cj is 1 if
the two components either overlap or connect to each other.
We use the notation ds(Ci, Cj) = 1. The structural distance
between Ci and Cj is n (≥ 2), or ds(Ci, Cj) = n, if ds(Ci, Cj) is

not less than n and there exists an internal component Ck
such that ds(Ci, Ck) + ds(Cj, Ck) = n. The structural distances
among the external components are defined similarly. Only
external components are used to define such distances. The
structural distance between two components Ei and Ej of
different types is 1 if the two components connect to each
other. The structural distance between Ei and Ej is n (≥ 2), or
ds(Ei, Ej) = n, if ds(Ei, Ej) is not less than n and there exists a
component Ek of either type such that ds(Ei, Ek) + ds(Ej, Ek)
= n. Note that structural distances among the components of
the same type are used to calculate the structural distances
between the components of different types.
 The actual number of internal disk components used
directly in the matching algorithm can be less than M. In our
experiments, we use first 30 of the M components. The key
features of a shape can typically be captured using 30
internal disk components. The reason for using more
internal disk components to calculate internal structural
distances is that the results are more accurate. Connected
components can become disconnected when not all maximal
disks are used to calculate structural distances. However, it
seems unnecessary to calculate structural distances for all
the internal maximal disks. External components play a
lesser role in the matching algorithm. Therefore, no
additional external disks are used to calculate structural
distances.
 Each of the 30 internal components has a size
determined by the skeleton transform, but we use the square
root of the area of each component to represent its size. For
external components, we use the square root of the area of
the intersection between a component and A ● 50Br to
represent its size. The size normalization is performed by
dividing each size number by the size of the largest internal
component. If a normalized external component size is
greater than 1, we convert it to 1. Another relationship that
we use in the matching is the geometric distance between
any two components. These distances are also normalized so
that the maximum distance is 1. Finally, for each component
we also calculate the directions of all neighboring
components (with structural distances of 5 or less). Each
direction represents the angle between the vector from the
current component to the other component and the x-axis.

3 Shape matching using relaxation

labeling

Assume that we have two shapes
 S1 = {C11, C12, … , C1n} (15)

 S2 = {C21, C22, … , C2m} (16)
where each C1i is a disk component of S1 and C2k is a disk
component of S2. For each shape, the first 30 of these
components are internal components and the rest of them
are external components. In our experiments, we have n ≤
50 and m ≤ 50. We want to map each C1i to a C2k, but we
don’t have enough information to select a unique C2k. We

use pi(k) to represent our initial confidence in the hypothesis
“C1i is mapped to C2k” for i = 1, 2, … , n and k = 1, 2, … ,
m. A component can only be mapped to a component of the
same type. Therefore, pi(k) = 0 for i = 1, 2, … , 30 and k =
31, 32, … , m and for i = 31, 32, … , n and k = 1, 2, … , 30.
Other initial confidence values are determined using size
similarity:

 1
|size size |

max size , size 17

for i = 1, 2, … , 30 and k = 1, 2, … , 30 and for i = 31, 32,
… , n and k = 31, 32, … , m. The normalizing constant Vi is
defined as

 1
| size size |

max size , size 18

for i = 1, 2, … , 30 and

 1
| size size |

max size , size 19

for i = 31, 32, … , n.
 The support from component C1j for the mapping of C1i
to C2k, where C1i and C2k are of the same type, is defined as
 ∑ , 20
for j = 1, 2, …, 30 or
 ∑ , 21
for j = 31, 32, …, n. Note that C1i and C1j can be of different
types. Two components of different types can support each
other. In (20) and (21), rij(k, l) represents the strength of
compatibility between the hypotheses “C1i maps to C2k” and
“C1j maps to C2l.” Note that C1j and C2l must be of the same
type. A strong support is received if high confidence
mappings of C1j are compatible with the mapping of C1i to
C2k.The compatibility coefficients rij(k, l) are defined in
terms of properties of and relationships among the
components involved. We first consider some special cases.
When i ≠ j, we define rij(k, k) = 0. When i = j, expressions
(20) and (21) become
 ∑ , 22
and
 ∑ , 23
This is the support for the mapping of C1i to C2k from C1i
itself. We define rii(k, l) = 0 for k ≠ l. Now expressions (22)
and (23) become rii(k, k)pi(k). We define rii(k, k) to be the
similarity between the size of C1i and the size of C2k:

 1
|size size |

max size , size
 24

We also define rij(k, l) = 0 if the structural distance between
components C1i and C1j is greater than 5 or the structural
distance between components C2k and C2l is greater than 5.
 In general, when i ≠ j and k ≠ l, each rij(k, l) in (20) and
(21) is a product of four similarity scores:
 rij(k, l) = s1s2s3s4 (25)
We now define these scores. Let ds1 be the structural
distance from C1i to C1j and ds2 be the structural distance

from C2k to C2l. Let e = |ds1 – ds2|. When min(ds1, ds2) ≤ 2,
we have

1 if 0
0.75 if 1
0.5 if 2
0 if 3

 (26)

When min(ds1, ds2) > 2, we have

1 if 0
0.75 if 1, 2
0.5 if 3, 4
0 if 5

 (27)

We are less tolerant to mapping errors in structural distances
for structurally closer components. Now consider the vector
from C1i to C1j and the vector from C2k to C2l. Let α be the
directional difference between the two vectors. When
min(ds1, ds2) ≤ 2, we define

 1 if /3
0 if /3

 (28)

When min(ds1, ds2) > 2, we define

 1 if /2
0 if /2

 (29)

We are less tolerant to directional errors for structurally
closer components. Let dg1 be the geometric distance from
C1i to C1j and dg2 be the geometric distance from C2k to C2l.
We define

 1
max ,

 30

Finally, let t1 = size(C1i) / size(C1j) and t2 = size(C2k) /
size(C2l). We define

 1
| |

max , 31

 The support for the mapping of C1i to C2k from all the
components in S1 is

 ,

, 32

for i = 1, 2, …, 30 and k = 1, 2, …, 30 and for i = 31, 32, …
, n and k = 31, 32, …, m. This is a weighted sum of
individual supports defined in (20) and (21). The weight wij
represents the strength of influence of C1j on C1i. In
calculating this support, we only want to consider the
contributions of neighboring components with structural
distances of less than or equal to 5. Therefore, we have wij =
0 if the structural distance between C1j and C1i is greater
than 5. Otherwise, the value of wij is defined in terms of the
component size, size(C1j), and the structural distance ds(C1i,
C1j):

size

, 1
 33

The normalizing constant Wi is defined as

size

, 1
 34

where Ni = {j | ds(C1i, C1j) ≤ 5} for i = 1, 2, … , n. The larger
the size of C1j is, the more important the support of C1j is to
C1i. The larger the structural distance between C1i and C1j is,
the less important the support of C1j is to C1i.
 The support values qi(k) are used to adjust the
confidence values pi(k). Let p0

i(k) be the current set of
confidence values. The updated set of confidence values
p1

i(k) are determined using the following formula:

 35

for i = 1, 2, … , 30 and k = 1, 2, … , 30 and

 36

for i = 31, 32, … , n and k = 31, 32, … , m. According to
(35) and (36), stronger supports will lead to higher
confidences and weaker supports will lower the
confidences. A new set of support values can be calculated
from this new set of confidence values. This process of
calculating the support values and updating the confidence
values is repeated. The confidence and support values will
converge. In our experiments, we use 15 iterations.
 The value

 37

with i ≤ 30 can be seen as the average support that an
internal component C1i receives for all its mappings from its
neighboring components in S1. It’s a weighted sum of
individual supports for specific mappings. The value
indicates the level of consistency between the mappings of
C1i and the mappings of its neighboring components in S1.
The overall or global consistency score for the whole S1 is
defined

 38

The weight vi indicates the importance of component C1i
and is defined as

 size size 39

for i = 1, 2, … , 30. The larger the size of C1i is, the more
important C1i is in the overall mapping from S1 to S2. We
use F as a measure of how well components of S1 are
mapped to components of S2. Note that only internal
components are used to calculate the global consistency
score. Due to the discrete nature of our disk definition, the
external components are not as stable under rotation.
 To measure how similar the two shapes are to each
other, we first map components of S1 to components of S2
and obtain one global consistency score. We then map
components of S2 to components of S1 and obtain another

 Fig. 4. Kimia data set.

Fig. 5. Shape images used in the experiments.

global consistency score. The average of these two global
consistency scores is used as a measure of how similar these
two shapes are to each other.
 To recognize objects of different orientations, we
match S1 and its 11 rotated versions with rotation angles of
iπ / 6, i = 1, 2, …, 11, to S2. The rotation is done to the
structural representation of S1. The best matching score is
used to indicate the similarity between S1 and S2.

4 Experiments

We performed matching experiments on the Kimia’s

data set in Fig. 4. This data set contains 25 shapes from 6

 Table 1. Matching results on Kimia data set.

Algorithm Top 1 Top 2 Top 3
Sharvit et al. [12] 23/25 21/25 20/25
Belonie et al. [13] 25/25 24/25 22/25
Ling and Jacobs [14] 25/25 24/25 25/25
Our previous algorithm [11] 25/25 25/25 25/25
Daliri and Torre [15] 25/25 25/25 25/25
Our new algorithm 25/25 25/25 25/25

 0.542 0.469 0.420 0.370 0.356

 0.562 0.444 0.381 0.356 0.319

 0.498 0.473 0.453 0.383 0.374

 0.658 0.557 0.495 0.466 0.461

 0.631 0.613 0.572 0.493 0.489

 0.643 0.635 0.635 0.589 0.409

 Fig. 6. Five top matches for several shapes.

categories. Table 1 shows our results in comparison with the
results of some existing algorithms [11-15]. In this
experiment, we count the number of first, second, and the
third closest matches that fall into the same category. Our
results are among the best.

We also applied our new algorithm and the previous
algorithm that uses the internal components only on another
set of 15 shapes. The 15 shapes shown in Fig. 5 belong to 5
categories with 3 shapes in each category. In this
experiment, we count the number of first and second closest
matches that fall into the same category. The algorithm that

uses the internal components only produces 15 correct top
matches and 14 correct second top matches. Using the new
algorithm, we have 15 correct top matches and 15 correct
second top matches. The new algorithm performs better than
the previous algorithm on this data set. These experiments
also show that our algorithms (with and without the external
components) can recognize rotated shapes and our
algorithms are not very sensitive to scale changes.

In Fig. 6, we also show several of the shapes from Fig.
4 along with their 5 best matches and the corresponding
matching scores. For the most part, the results seem to agree
well with our intuition. Among shapes from different
categories, fish shapes and tool shapes are quite similar.
With the big ears, rabbit shapes and animation shapes look
quite alike as well.

5 Conclusions

We have developed a structural shape matching

algorithm that uses both internal and external shape
components selected from the maximal disks determined by
a traditional and a generalized morphological skeleton
transforms. Only a small number of disk components are
used in shape matching. The matching algorithm uses
relaxation labeling to optimize the mapping among the
components of two shapes. The global consistency scores
are used directly as measures of similarity between shapes.
Only internal components are used to calculate the global
consistency scores. The experiments show that the
algorithm produces good and intuitive matching results. The
algorithm is tolerant to both rotation and scale changes. This
algorithm shows improved performances compared to an
earlier morphological shape matching algorithm that uses
internal components only.

6 References

[1] P.A. Maragos and R.W. Schafer, "Morphological
skeleton representation and coding of binary images," IEEE
Trans. Acoust. Speech Signal Process., vol. 34, no. 5, pp.
1228-1244, 1986.

[2] I. Pitas and A.N. Venetsanopoulos, "Morphological
shape decomposition," IEEE Transactions on Pattern
Analysis and Machine Intelligence., vol. 12, no. 1, pp. 38-
45, 1990.

[3] P. Maragos, "Morphology-based symbolic image
modeling, multi-scale nonlinear smoothing, and pattern
spectrum," Proc. IEEE Comput. Society Conf. Comput.
Vision Pattern Recognition, pp. 766-773, 1988.

[4] J.M. Reinhardt and W.E. Higgins, "Efficient
morphological shape representation," IEEE Transactions on
Image Processing, vol. 5, no. 1, pp. 89-101, 1996.
[5] C. Ronse and B. Macq, "Morphological shape and
region description," Signal Processing, vol. 25, pp. 91-106,
1991.

[6] J. Goutsias and D. Schonfeld, "Morphological
representation of discrete and binary images," IEEE
Transactions on Signal Processing, vol. 39, no.6, pp. 1369-
1379, 1991.

[7] J. Xu, “Efficient morphological shape representation
with overlapping disk components,” IEEE Transactions on
Image Processing, vol. 10, no. 9, pp. 1346-1356, 2001.

[8] J. Xu, Morphological decomposition of 2-D binary
shapes into modestly overlapped octagonal and disk
components,” IEEE Transactions on Image Processing,
vol.16, no. 2, pp. 337-348, 2007.

[9] P. E. Trahanias, "Binary shape recognition using the
morphological skeleton transform," Pattern Recognition,
vol. 25, no. 11, pp. 1277-1288, 1992.

[10] E.A. Ei-Kwae and M.R. Kabuka, “Binary object
representation and recognition using the Hilbert
morphological skeleton transform,” Pattern Recognition,
vol. 33, pp. 1621-1636, 2000.

[11] J. Xu, "Shape matching using morphological shape
components and relaxation labeling," Proc. of 2010
International Conference on Image Processing, Computer
Vision, and Pattern Recognition,” Las Vegas, Nevada, July
2010.

[12] D. Sharvit, J. Chan, H. Tek, and B. Kimia, “Symmetry-
based indexing of image databases,” J. Visual Comm. And
Image Representation, vol. 9, no. 4, pp. 366-380, 1998.

[13] S. Belongie, J. Malik, and J. Puzicha, “Shape matching
and object recognition using shape contexts,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 24, pp. 509-522, 2002.

[14] H. Ling and D. Jacobs, “Shape classification using the
inner-distance,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 2, pp. 286-299, 2007.

[15] M.R. Daliri and V. Torre, “Robust symbolic
representation for shape recognition and retrieval,” Pattern
recognition, Vol. 41, no. 5, pp. 1782-1798, 2008.

