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Abstract - The morphological skeleton transform (MST) is 

a leading morphological shape representation scheme. In 

the MST, a given shape is represented as a union of all 

maximal disks contained in the shape. The concepts of 

external skeleton points and external maximal disks were 

introduced recently to derive so-called external shape 

components for shape matching purposes. In this paper, we 

develop a generalized morphological skeleton transform 

that combines the concepts of internal and external maximal 

disks into a unified framework. In this framework, a shape is 

described in terms disk components that need to be added as 

well as disk components that need to be removed. This 

framework provides a more natural way of modeling the 

approximation and reconstruction of binary shapes. 
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1 Introduction 
 

Shape representation is an important issue in image 

analysis and computer vision. Efficient shape representation 

provides the foundation for the development of efficient 

algorithms for many shape-related processing tasks such as 

image coding, shape matching and recognition, content-

based video processing, and image data retrieval. 

Mathematical morphology is a shape-based approach to 

image processing. A number of morphological shape 

representation algorithms have been proposed [1-8]. The 

morphological skeleton transform (MST) is a leading 

morphological shape representation scheme [1]. In the MST, 

a given shape is represented as a union of all maximal disks 

contained in the shape. The advantages of the MST include 

that it has a simple and intuitive mathematical 

characterization as well as easy and efficient 

implementations. Some shape matching algorithms have 

been developed based on the MST [9, 10]. 

In a recent paper, we developed a structural shape 

matching algorithm that uses both internal and external 

shape components [11]. The internal shape components are 

selected from the internal maximal disks determined by a 

traditional MST. The external shape components are 

selected from the external maximal disks determined by a 

separate “external” skeleton transform. 

In this paper, we develop a generalized morphological 

skeleton transform that combines the concepts of internal 

and external maximal disks into a unified framework. In this 

framework, a shape is described in terms disk components 

that need to be added as well as disk components that need 

to be removed. The positive (addition) and negative 

(removal) steps are applied alternately to derive the final 

representation of the input shape. 

 

2 Internal and External Skeleton 

Transforms 
 

We first review the standard skeleton transform. For a 

shape image X and a structuring element B, which is used as 

the unit disk, if we define size-i disk iB as iB = B O+ B O+ … O+ 

B (i B’s), then X can be expressed as the union of all 

maximal disks contained in X:  

        X = (SN O+ NB)  (SN-1 O+ (N-1)B)  …  (S2 O+ 2B) 

                (S1 O+ B)  S0                                                   (1) 

where 

                       Si = (X O- iB) \ ((X O- iB) ○ B)                      (2) 

and N is the largest integer such that X O- NB ≠ Ø. Each Si is 

called a skeleton subset of order i. Each skeleton point in Si 

represents a maximal disk of size i contained in X. A 

smoothed (or approximate) version of X can be 

reconstructed if some lower order skeleton subsets are 

omitted: 

      X ○ kB = (SN O+ NB)  (SN-1 O+ (N-1)B)  …  

                     (Sk+1 O+ (k+1)B)  (Sk O+ kB), for k ≤ N.      (3) 

We can also write 

      X ○ kB = (X ○ nB)  (Sn-1 O+ (n-1)B)  …   

                   (Sk+1 O+ (k+1)B)  (Sk O+ kB), for k < n ≤ N.     (4) 

A more accurate approximation X ○ kB for X can be 

obtained from a rougher approximation X ○ nB by adding 

additional maximal disks. 

      We now review the concept of external skeleton points. 

For the unit disk B, the reflection of B is defined as  

                             𝐵𝑅 = {𝑏| − 𝑏 ∈ 𝐵}.                              (5) 

For a shape image X and the unit disk B, since closing 

operation is extensive, we have  
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                                                                     Fig. 1. Three simple shapes.  

 

 

            X = (X ● B
R
) \ T0 = ((X O+ B

R
) O- B

R
) \ T0  

                = (X1 O- B
R
) \ T0                                                  (6) 

where 

                           T0 = (X ● B
R
) \ X                                     (7) 

                               X1 = X O+ B
R
.                                        (8) 

Now we can also write  

                          X1 = (X1 ● B
R
) \ T1                                   (9) 

where 

       T1 = (X1 ● B
R
) \ X1 = ((X O+ B

R
) ● B

R
) \ (X O+ B

R
).     (10) 

Combining (6) with (9), we have 

           X = (((X1 ● B
R
) \ T1) O- B

R
) \ T0 

              = ((X1 ● B
R
) O- B

R
) \ (T1 O+ B) \ T0 

              = ((((X O+ B
R
) O+ B

R
) O- B

R
) O- B

R
) \ (T1 O+ B) \ T0 

              = (X ● 2B
R
) \ (T1 O+ B) \ T0.                                (11) 

Each point in T0 represents a point that is not in X and each 

point p in T1 represents a disk p O+  B that is not in X. 

Removing all such points and disks results in the restoration 

of X from X ● 2B
R
. Repeating similar steps, we have 

         X = (X ● mB
R
) \ (Tm-1 O+ (m-1)B) \ (Tm-2 O+ (m-2)B) \ …  

                \ (T1 O+ B) \ T0                                                   (12) 

where 

                    Ti = ((X O+ iB
R
) ● B

R
) \ (X O+ iB

R
).                 (13) 

The points in Tm-1, Tm-2, … T1, T0 can be viewed as external 

skeleton points and they represents external disks of 

different sizes. Removal of such disks results in the 

restoration of X from X ● mB
R
. In fact, these external disks 

are maximal disks contained in the background shape, or the 

complement of X. This transform can be viewed as an 

external skeleton transform. A partially restored X can be 

created if some lower order skeleton subsets are omitted: 

          X ● kB
R
 = (X ● mB

R
) \ (Tm-1 O+ (m-1)B) \ …  

                         \ (Tk+1 O+ (k+1)B) \ (Tk O+ kB), for k < m.   (14) 

A better approximation X ● kB
R
 for X is obtained from a 

rougher approximation X ● mB
R
 by removing external 

maximal disks. 

 

3 Generalized Skeleton Transform 
 

It is clear that a shape cannot be completely specified 

using external skeleton points only. The closed version X ● 

mB
R
 of X in (12) in general will grow bigger as m increases. 

We can use a number of internal skeleton points to represent 

X ● mB
R
. Any finite shape can be completely specified 

using internal skeleton points only. However, sometimes it 

is more efficient to describe a shape using both internal and 

external skeleton points. Consider the shape in Fig. 1(a). 

This is a near circular shape (in digital sense). Therefore, 

there is an efficient representation for it using internal 

skeleton points only. Now look at the shape in Fig. 1(b). 

This is the same circular shape with a near circular hole in 

it. If we still only use internal skeleton points, then we will 

need a lot more skeleton points to describe the areas 

between internal and external boundaries. If we can use 

external skeleton points to describe the hole first, then we 

can still use the initial efficient internal skeleton 

representation for the overall circular shape. Now we 

consider the shape in Fig. 1(c). The hole on the object has 

been cut into two halves. To represent two separate holes, 

we will need to use more external skeleton points. But if we 

can describe the small line segment that separates the 

original hole using some positive skeleton points first, then 

the more efficient representation for the original hole can 

still be used as part of the overall description. In this section, 

we develop a generalized skeleton transform that takes this 

hierarchical and alternately positive and negative 

description approach. 

      For a given shape image X and an structuring element B 

which is used as the unit disk, we can write 

                       X = (X ○ B)  S0 = X’  S0                        (15) 

where 

                    X’ = X ○ B,                                     (16) 

                S0 = X \ (X ○ B).                                 (17) 

In (15), X’ can be viewed as a smoothed version of X and S0 

is a positive skeleton subset. For X’ we can write 

      X’ = (X’ ● B
R
) \ T0 = X1 \ T0                         (18) 

where 

                  X1 = X’ ● B
R
                                     (19) 

             T0 = (X’ ● B
R
) \ X’                                 (20) 

In (18), X1 can be viewed as a smoothed version of X’ and 

T0 is a negative skeleton subset. Combining (15) and (18), 

we get 
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Fig. 2. An example showing that X1 ≠ X1 ○ 2B  S1 O+ B: (a) 

Image X; (b) Unit disk B; (c) X’ = X ○ B; (d) X1 = X’ ● B
R
; 

(e) X1 ○ 2B  S1 O+ B. 

 

 

               X = X1 \ T0  S0                                   (21) 

We assume that we perform set-theoretical operations from 

left to right. X1 can also be viewed as a smoothed version of 

X and both positive and negative skeleton subsets are used 

to represent X now. For X1 in (21), we have 

             X1 ≈ X1 ○ 2B  S1 O+ B = X1’  S1 O+ B                (22) 

where 

                X1’ = X1 ○ 2B                                     (23) 

        S1 = X1 O- B \ X1 O- B ○ B                            (24) 

We assume that we perform morphological operations from 

left to right and we perform morphological operations 

before set-theoretical operations. In (22), X1’ is a smoothed 

version of X1 and S1 is a positive skeleton subset. Note that, 

in general, X1 ≠ X1 ○ 2B  S1 O+ B = X1 ○ B. An example 

showing this inequality is given in Fig. 2. Combining (21) 

and (22), we get an approximation for X: 

                     X ≈ X1’  S1 O+ B \ T0  S0                          (25) 

Now we have an approximation for X using a smoothed 

version X1’ and a number of skeleton subsets. In the next 

step, we use closing again. For X1’ in (25), we have  

            X1’ ≈ X1’ ● 2B
R
 \ T1 O+ B = X2 \ T1 O+ B                 (26) 

where 

              X2 = X1’ ● 2B
R
                                     (27) 

    T1 = X1’ O+ B
R
 ● B

R
 \ X1’ O+ B

R
                        (28) 

Notice also that in general we have X1’ ≠ X1’ ● 2B
R
 \ T1 O+ B 

= X1’ ● B
R
. In (26), we have a smoothed version X2 and a 

negative skeleton subset T1. Combining (25) and (26), we 

have a new approximation: 

               X ≈ X2 \ T1 O+ B  S1 O+ B \ T0  S0                  (29) 

In order to see a pattern, we develop two more steps. The 

next approximation step uses an opening operation and a 

positive skeleton subset: 

          X2 ≈ X2 ○ 3B  S2 O+ 2B = X2’  S2 O+ 2B             (30) 

where 

              X2’ = X2 ○ 3B                                     (31) 

     S2 = X2 O- 2B \ X2 O- 2B ○ B                         (32) 

A new approximation containing the new skeleton subset is 

       X ≈ X2’  S2 O+ 2B \ T1 O+ B  S1 O+ B \ T0  S0       (33) 

The next approximation step uses a closing operation and a 

negative skeleton subset: 

           X2’ ≈ X2’ ● 3B
R
 \ T2 O+ 2B = X3 \ T2 O+ 2B            (34) 

where 

                X3 = X2’ ● 3B
R
                                 (35) 

   T2 = X2’ O+ 2B
R
 ● B

R
 \ X2’ O+ 2B

R
                   (36) 

A new approximation containing the new skeleton subset is 

X ≈ X3 \ T2 O+ 2B  S2 O+ 2B \ T1 O+ B  S1 O+ B \ T0  S0  

                                                                                   (37) 

      In general, with  

    X ≈ Xi \ Ti-1 O+ (i-1)B  Si-1 O+ (i-1)B \ . . . \ T0  S0    (38) 

we use 

           Xi ≈ Xi ○ (i+1)B  Si O+ iB = Xi’  Si O+ iB           (39) 

where 

               Xi’ = Xi ○ (i+1)B                               (40) 

         Si = Xi O- iB \ Xi O- iB ○ B                         (41) 

A new approximation for X containing Si is 

         X ≈ Xi’  Si O+ iB \ Ti-1 O+ (i-1)B  Si-1 O+ (i-1)B \ . . .  

                \ T0  S0                                                         (42) 

We also use 

           Xi’ ≈ Xi’ ● (i+1)B
R
 \ Ti O+ iB = Xi+1 \ Ti O+ iB        (43) 

where 

              Xi+1 = Xi’ ● (i+1)B
R
                           (44) 

      Ti = Xi’ O+ iB
R
 ● B

R
 \ Xi’ O+ iB

R
                   (45) 

A new approximation including the latest skeleton subset is 

       X ≈ Xi+1 \ Ti O+ iB  Si O+ iB \ Ti-1 O+ (i-1)B  Si-1 

              O+ (i-1)B \ . . . \ T0  S0                                     (46) 

Eventually, we will encounter a N such that XN’ = XN ○ 

(N+1)B = Ø with XN ≠ Ø. This implies that XN O- (N+1)B = 

Ø. And from this, we can see that SN = XN O- NB. It is also 

easy to see that TN = Ø and Xn = Xn’ = Ø for n ≥ N+1. So the 

final approximation is 

          X ≈ SN O+ NB \ TN-1 O+ (N-1)B  SN-1 O+ (N-1)B \  . . .  

                 \ T0  S0                                                         (47) 

      We have obtained a series of approximations for X. The 

final approximation uses a sequence of alternately positive 

and negative skeleton subsets. These skeleton subsets are 

obtained from progressively smoothed versions of X. We 

now claim that all these approximations are in fact exact 

representations of X: 

          X = X’  S0 

         = X1 \ T0  S0 

         = X1’  S1 O+ B \ T0  S0 

         = X2 \ T1 O+ B  S1 O+ B \ T0  S0 

         = X2’  S2 O+ 2B \ T1 O+ B  S1 O+ B \ T0  S0 

         = X3 \ T2 O+ 2B  S2 O+ 2B \ T1 O+ B  S1 O+ B \ T0  S0 

         . . .  

             = SN O+ NB \ TN-1 O+ (N-1)B  SN-1 O+ (N-1)B \  . . .  

                 \ T0  S0                                                          (48) 

where Xi’, Xi, Si, and Ti are defined in (16, 17), (19, 20), (40, 

41), and (44, 45). 

      We first show that all the approximations contain X as a 

subimage. Following the derivation process, we first have X 

= X ○ B  S0 = X’  S0 with X’ = X ○ B. We then have X’ = 

X’ ● B
R
 \ T0 = X1 \ T0 and X = X1 \ T0  S0 with X1 = X’ ● B

R
. 

Now consider the approximation step X1 ≈ X1 ○ 2B  S1 O+ B 
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                                      Fig. 3. The skeleton points of the standard and the new skeleton transforms. 

 

 

 = X1’  S1 O+ B. Note that X1 = X’ ● B
R
 ⊇ X’ and X1 ○ 2B  

S1 O+ B = X1’  S1 O+ B = X1 ○ B contains all size-one disks in 

X1. So X1’  S1 O+ B also contains all size-one disks in X’. 

From X’ = X’ ● B
R
 \ T0, we can see that T0 does not contain 

any points in X’.  Thus X1’  S1 O+ B \ T0 still contains all 

size-one disks in X’. Note also that X’ = X ○ B is a union of 

size-one disks. Therefore, X1’  S1 O+  B \ T0 ⊇  X’. 

Combining this with X = X’  S0, we get 

          X1’  S1 O+ B \ T0  S0 ⊇ X                      (49) 

Consider the next approximation step X1’ ≈ X1’ ● 2B
R
 \ T1 O+ 

B = X2 \ T1 O+ B. Note that X1’ ● 2B
R
 \ T1 O+ B = X2 \ T1 O+ B = 

X1’ ● B
R
. Therefore  

                X2 \ T1 O+ B ⊇ X1’                               (50) 

Combining this with (49), we get X2 \ T1 O+ B  S1 O+ B \ T0 

 S0 ⊇ X. Move on to the next approximation step X2 ≈ X2 ○ 

3B  S2 O+ 2B = X2’  S2 O+ 2B. Note that X2 = X1’ ● 2B
R
 ⊇ 

X1’ and X2 ○ 3B  S2 O+ 2B = X2’  S2 O+ 2B = X2 ○ 2B 

contains all size-two disks in X2. So X2’  S2 O+ 2B also 

contains all size-two disks in X1’. From X2 \ T1 O+ B ⊇ X1’ in 

(50), T1 O+ B does not contain any points in X1’. Thus X2’  

S2 O+ 2B \ T1 O+ B still contains all size-two disks in X1’. Note 

also that X1’ = X1○ 2B is a union of size-two disks. 

Therefore X2’  S2 O+ 2B \ T1 O+ B ⊇ X1’. Combining this 

with (49), we get X2’  S2 O+ 2B \ T1 O+ B  S1 O+ B \ T0  S0 

⊇  X. Repeating similar steps, we can show that all our 

approximations contain X as a subimage. 

      We now show that all our approximations are subimages 

of X. Consider the first representation step described in (15)-

(17). Complementing the both sides of X = X’  S0 from 

(15), we get X
C
 = (X’)

C
 \ S0. Complementing the both sides 

of (16), we have (X’)
C
 = X

C
 ● B

R
. We can also write S0 in 

(17) as S0 = X \ X ○ B = X ∩ (X ○ B)
C
 = X

C
 ● B

R
 \ X

C
. So, 

this is a representation step for X
C
 using a closing operation 

and a negative skeleton subset S0. Now look at the next 

representation step described in (18)-(21). Complementing 

the both sides of (19) gives us (X1)
C
 = (X’)

C
 ○ B. From (20), 

we have T0 = X’ ● B
R
 \ X’ = X’ ● B

R
 ∩ (X’)

C
 = (X’)

C
 \ (X’ ● 

B
R
)

C
 = (X’)

C
 \ (X’)

C
 ○ B. Complementing the both sides of 

(21), we get X
C
 = (X1)

C
  T0 \ S0. Clearly, this is a 

representation step for X
C
 using an opening operation and a 

positive skeleton subset T0. For the next approximation step 

described in (22)-(25), we again first complement the both 

sides of (23). It gives us (X1’)
C
 = (X1)

C
 ● 2B

R
. From (24), we 

have S1 = X1 O- B \ X1 O- B ○ B = X1 O- B ∩ (X1 O- B ○ B)
C
 = 

(X1 O- B ○ B)
C
 \ (X1 O- B)

C
 = (X1)

C
 O+ B

R
 ● B

R
 \ (X1)

C
 O+ B

R
. 

Complementing the both sides of (25) gives us X
C
 ≈ (X1’)

C
 \ 

S1 O+ B  T0 \ S0. This is an approximation step for X
C
 using 

a closing operation and a negative skeleton subset S1. 

Similarly, from (26)-(29), we get (X2)
C
 = (X1’)

C
 ○ 2B, T1 = 

(X1’)
C
 O- B \ (X1’)

C
 O- B ○ B, and X

C
 ≈ (X2)

C
  T1 O+ B \ S1 O+ B 

 T0 \ S0. This is an approximation step for X
C
 using an 

opening operation and a positive skeleton subset T1. This 

process can be repeated for the remaining approximation 

steps. Each representation/approximation step for X using an 

opening operation is a representation/approximation step for 

X
C
 using a closing operation and vice versa. Even though 

the representation/approximation sequence for X
C
 begins 

with a step using a closing operation, we can still use the 

similar techniques that we used earlier to show that all the 

approximations for X
C
 actually contain X

C
 as a subimage. 

That means that all the original approximations for X are 

subimages of X. Combined with the earlier results that all 

the original approximations contain X as a subimage, we 

conclude that all these approximations are exact 

representations of X. 

 

4 Representation Examples 
 

We now go back to the shape in Fig. 1(c). The standard 

skeleton transform uses 151 internal skeleton points, as 

shown in Fig. 3(a), to represent this shape. Our new 

algorithm only uses 20 internal and external skeleton points. 

Fig. 3(b) shows the internal skeleton points and Fig. 3(c) 

shows the external skeleton points of the new algorithm. In 

our implementation of both algorithms, we use two 

structuring elements B0 and B1 shown in Fig. 4 to define 

discrete disks of different sizes: 

                                    B = B0                                           (51) 

                 iB = (i-1)B O+ B(i-1) mod 2, for i ≥ 2                      (52) 

The skeleton subset formulas now become 
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     Fig. 4. Two structuring elements: (a) B0; (b) B1. 

 

 

                   Si = Xi O- iB \ Xi O- iB ○ Bi mod 2                        (53) 

  Ti = Xi’ O+ iB
R
 ● B

R
i mod 2 \ Xi’ O+ iB

R
                   (54) 

      For the dog shape in Fig. 5(a), the highest order non-

empty internal skeleton subset is S15. S15 O+ 15B, which is 

shown in Fig. 5(b), is the initial approximation to X. To 

improve this approximation, additional internal and external 

skeleton subsets are applied to add and remove points. The 

partial reconstruction in Fig. 5(c) is created by applying all 

the skeleton subsets down to order 10. Fig. 5(d) shows the 

reconstruction using all the skeleton subsets down to order 

5. The reconstruction using all the skeleton subsets down to 

order 2 is shown in Fig. 5(e). The exact reconstruction is 

obtained if we use all the skeleton subsets. We can see that 

by adding and removing smaller and smaller scale parts, 

more and more accurate details are being created by this 

process. This process is similar to the creation of a clay 

sculpture by a sculptor. The final sculpture is created by 

iteratively adding and removing clay, in gradually smaller 

pieces, to and from the initial rough shape. The total number 

of internal and external skeleton points used by the 

generalized skeleton transform to represent the dog shape is 

407. The standard skeleton transform uses 257 internal 

skeleton points. For many shapes, using two types of 

skeleton points simultaneously will cause more skeleton 

points to be used. However, the main advantage of the 

generalized skeleton transform is that it provides a more 

general and more powerful framework. It also provides a 

more natural way of modeling the approximation and 

reconstruction of binary shapes. 

      Fig. 6 shows a fractal shape and its approximations. This 

shape has many internal holes of various sizes. Its external 

boundaries also contain many structures of different scales. 

Fig. 6 shows the gradual reconstruction of the original shape 

using more and more lower-order internal and external 

skeleton subsets. The smallest order skeleton subsets used in 

these approximations are of orders 34, 20, 15, 10, 5, 2, and 

1. For this shape, the standard skeleton transform uses 2363 

internal skeleton points. Our new algorithm uses 1930 

internal and external skeleton points. The reconstruction 

process agrees well with our intuitive concept of describing 

a shape in a gradual process of describing main structures to 

fine details. 

 

5 Conclusions 
 

We have developed a generalized skeleton transform 

that represents a binary shape using both internal and 

external skeleton points. Using this representation, a shape 

can be approximated at different levels. The roughest 

approximation is obtained by applying opening and closing 

operations alternately to the original shape using disk 

structuring elements of increasing sizes. More accurate 

approximations can be reconstructed by alternately adding 

and removing disk parts of decreasing sizes from the initial 

approximation. The standard skeleton transform can be seen 

as a special case of our algorithm. In the standard skeleton 

transform, only opening operations are used in deriving 

skeleton subsets and only “addition” (set union) operations 

are used to rebuild more accurate approximations. 
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                                         Fig. 5. A dog shape and its reconstructions. 

 

 

 

 
 

 
 

                                           Fig. 6. A fractal shape and its reconstructions. 

 

 


